COLOR

  • Weta Digital – Manuka Raytracer and Gazebo GPU renderers – pipeline

    https://jo.dreggn.org/home/2018_manuka.pdf

     

    http://www.fxguide.com/featured/manuka-weta-digitals-new-renderer/

     

    The Manuka rendering architecture has been designed in the spirit of the classic reyes rendering architecture. In its core, reyes is based on stochastic rasterisation of micropolygons, facilitating depth of field, motion blur, high geometric complexity,and programmable shading.

     

    This is commonly achieved with Monte Carlo path tracing, using a paradigm often called shade-on-hit, in which the renderer alternates tracing rays with running shaders on the various ray hits. The shaders take the role of generating the inputs of the local material structure which is then used bypath sampling logic to evaluate contributions and to inform what further rays to cast through the scene.

     

    Over the years, however, the expectations have risen substantially when it comes to image quality. Computing pictures which are indistinguishable from real footage requires accurate simulation of light transport, which is most often performed using some variant of Monte Carlo path tracing. Unfortunately this paradigm requires random memory accesses to the whole scene and does not lend itself well to a rasterisation approach at all.

     

    Manuka is both a uni-directional and bidirectional path tracer and encompasses multiple importance sampling (MIS). Interestingly, and importantly for production character skin work, it is the first major production renderer to incorporate spectral MIS in the form of a new ‘Hero Spectral Sampling’ technique, which was recently published at Eurographics Symposium on Rendering 2014.

     

    Manuka propose a shade-before-hit paradigm in-stead and minimise I/O strain (and some memory costs) on the system, leveraging locality of reference by running pattern generation shaders before we execute light transport simulation by path sampling, “compressing” any bvh structure as needed, and as such also limiting duplication of source data.
    The difference with reyes is that instead of baking colors into the geometry like in Reyes, manuka bakes surface closures. This means that light transport is still calculated with path tracing, but all texture lookups etc. are done up-front and baked into the geometry.

     

    The main drawback with this method is that geometry has to be tessellated to its highest, stable topology before shading can be evaluated properly. As such, the high cost to first pixel. Even a basic 4 vertices square becomes a much more complex model with this approach.

     

     

    Manuka use the RenderMan Shading Language (rsl) for programmable shading [Pixar Animation Studios 2015], but we do not invoke rsl shaders when intersecting a ray with a surface (often called shade-on-hit). Instead, we pre-tessellate and pre-shade all the input geometry in the front end of the renderer.
    This way, we can efficiently order shading computations to sup-port near-optimal texture locality, vectorisation, and parallelism. This system avoids repeated evaluation of shaders at the same surface point, and presents a minimal amount of memory to be accessed during light transport time. An added benefit is that the acceleration structure for ray tracing (abounding volume hierarchy, bvh) is built once on the final tessellated geometry, which allows us to ray trace more efficiently than multi-level bvhs and avoids costly caching of on-demand tessellated micropolygons and the associated scheduling issues.

     

    For the shading reasons above, in terms of AOVs, the studio approach is to succeed at combining complex shading with ray paths in the render rather than pass a multi-pass render to compositing.

     

    For the Spectral Rendering component. The light transport stage is fully spectral, using a continuously sampled wavelength which is traced with each path and used to apply the spectral camera sensitivity of the sensor. This allows for faithfully support any degree of observer metamerism as the camera footage they are intended to match as well as complex materials which require wavelength dependent phenomena such as diffraction, dispersion, interference, iridescence, or chromatic extinction and Rayleigh scattering in participating media.

     

    As opposed to the original reyes paper, we use bilinear interpolation of these bsdf inputs later when evaluating bsdfs per pathv ertex during light transport4. This improves temporal stability of geometry which moves very slowly with respect to the pixel raster

     

    In terms of the pipeline, everything rendered at Weta was already completely interwoven with their deep data pipeline. Manuka very much was written with deep data in mind. Here, Manuka not so much extends the deep capabilities, rather it fully matches the already extremely complex and powerful setup Weta Digital already enjoy with RenderMan. For example, an ape in a scene can be selected, its ID is available and a NUKE artist can then paint in 3D say a hand and part of the way up the neutral posed ape.

     

    We called our system Manuka, as a respectful nod to reyes: we had heard a story froma former ILM employee about how reyes got its name from how fond the early Pixar people were of their lunches at Point Reyes, and decided to name our system after our surrounding natural environment, too. Manuka is a kind of tea tree very common in New Zealand which has very many very small leaves, in analogy to micropolygons ina tree structure for ray tracing. It also happens to be the case that Weta Digital’s main site is on Manuka Street.

     

     

    , ,
    Read more: Weta Digital – Manuka Raytracer and Gazebo GPU renderers – pipeline

LIGHTING

  • Photography basics: Why Use a (MacBeth) Color Chart?

    Start here: https://www.pixelsham.com/2013/05/09/gretagmacbeth-color-checker-numeric-values/

     

    https://www.studiobinder.com/blog/what-is-a-color-checker-tool/

     

     

     

     

    In LightRoom

     

    in Final Cut

     

    in Nuke

    Note: In Foundry’s Nuke, the software will map 18% gray to whatever your center f/stop is set to in the viewer settings (f/8 by default… change that to EV by following the instructions below).
    You can experiment with this by attaching an Exposure node to a Constant set to 0.18, setting your viewer read-out to Spotmeter, and adjusting the stops in the node up and down. You will see that a full stop up or down will give you the respective next value on the aperture scale (f8, f11, f16 etc.).

    One stop doubles or halves the amount or light that hits the filmback/ccd, so everything works in powers of 2.
    So starting with 0.18 in your constant, you will see that raising it by a stop will give you .36 as a floating point number (in linear space), while your f/stop will be f/11 and so on.

     

    If you set your center stop to 0 (see below) you will get a relative readout in EVs, where EV 0 again equals 18% constant gray.

     

    In other words. Setting the center f-stop to 0 means that in a neutral plate, the middle gray in the macbeth chart will equal to exposure value 0. EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

     

    This will set the sun usually around EV12-17 and the sky EV1-4 , depending on cloud coverage.

     

    To switch Foundry’s Nuke’s SpotMeter to return the EV of an image, click on the main viewport, and then press s, this opens the viewer’s properties. Now set the center f-stop to 0 in there. And the SpotMeter in the viewport will change from aperture and fstops to EV.

    , ,
    Read more: Photography basics: Why Use a (MacBeth) Color Chart?
  • HDRI shooting and editing by Xuan Prada and Greg Zaal

    www.xuanprada.com/blog/2014/11/3/hdri-shooting

     

    http://blog.gregzaal.com/2016/03/16/make-your-own-hdri/

     

    http://blog.hdrihaven.com/how-to-create-high-quality-hdri/

     

    Shooting checklist

    • Full coverage of the scene (fish-eye shots)
    • Backplates for look-development (including ground or floor)
    • Macbeth chart for white balance
    • Grey ball for lighting calibration
    • Chrome ball for lighting orientation
    • Basic scene measurements
    • Material samples
    • Individual HDR artificial lighting sources if required

    Methodology

    • Plant the tripod where the action happens, stabilise it and level it
    • Set manual focus
    • Set white balance
    • Set ISO
    • Set raw+jpg
    • Set apperture
    • Metering exposure
    • Set neutral exposure
    • Read histogram and adjust neutral exposure if necessary
    • Shot slate (operator name, location, date, time, project code name, etc)
    • Set auto bracketing
    • Shot 5 to 7 exposures with 3 stops difference covering the whole environment
    • Place the aromatic kit where the tripod was placed, and take 3 exposures. Keep half of the grey sphere hit by the sun and half in shade.
    • Place the Macbeth chart 1m away from tripod on the floor and take 3 exposures
    • Take backplates and ground/floor texture references
    • Shoot reference materials
    • Write down measurements of the scene, specially if you are shooting interiors.
    • If shooting artificial lights take HDR samples of each individual lighting source.

    Exposures starting point

    • Day light sun visible ISO 100 F22
    • Day light sun hidden ISO 100 F16
    • Cloudy ISO 320 F16
    • Sunrise/Sunset ISO 100 F11
    • Interior well lit ISO 320 F16
    • Interior ambient bright ISO 320 F10
    • Interior bad light ISO 640 F10
    • Interior ambient dark ISO 640 F8
    • Low light situation ISO 640 F5

     

    NOTE: The goal is to clean the initial individual brackets before or at merging time as much as possible.
    This means:

    • keeping original shooting metadata
    • de-fringing
    • removing aberration (through camera lens data or automatically)
    • at 32 bit
    • in ACEScg (or ACES) wherever possible

     

    Here are the tips for using the chromatic ball in VFX projects, written in English:
    https://www.linkedin.com/posts/bellrodrigo_here-are-the-tips-for-using-the-chromatic-activity-7200950595438940160-AGBp

     

    Tips for Using the Chromatic Ball in VFX Projects**

    The chromatic ball is an invaluable tool in VFX work, helping to capture lighting and reflection data crucial for integrating CGI elements seamlessly. Here are some tips to maximize its effectiveness:

     

    1. **Positioning**:
    – Place the chromatic ball in the same lighting conditions as the main subject. Ensure it is visible in the camera frame but not obstructing the main action.
    – Ideally, place the ball where the CGI elements will be integrated to match the lighting and reflections accurately.

     

    2. **Recording Reference Footage**:
    – Capture reference footage of the chromatic ball at the beginning and end of each scene or lighting setup. This ensures you have consistent lighting data for the entire shoot.

     

    3. **Consistent Angles**:
    – Use consistent camera angles and heights when recording the chromatic ball. This helps in comparing and matching lighting setups across different shots.

     

    4. **Combine with a Gray Ball**:
    – Use a gray ball alongside the chromatic ball. The gray ball provides a neutral reference for exposure and color balance, complementing the chromatic ball’s reflection data.

     

    5. **Marking Positions**:
    – Mark the position of the chromatic ball on the set to ensure consistency when shooting multiple takes or different camera angles.

     

    6. **Lighting Analysis**:
    – Analyze the chromatic ball footage to understand the light sources, intensity, direction, and color temperature. This information is crucial for creating realistic CGI lighting and shadows.

     

    7. **Reflection Analysis**:
    – Use the chromatic ball to capture the environment’s reflections. This helps in accurately reflecting the CGI elements within the same scene, making them blend seamlessly.

     

    8. **Use HDRI**:
    – Capture High Dynamic Range Imagery (HDRI) of the chromatic ball. HDRI provides detailed lighting information and can be used to light CGI scenes with greater realism.

     

    9. **Communication with VFX Team**:
    – Ensure that the VFX team is aware of the chromatic ball’s data and how it was captured. Clear communication ensures that the data is used effectively in post-production.

     

    10. **Post-Production Adjustments**:
    – In post-production, use the chromatic ball data to adjust the CGI elements’ lighting and reflections. This ensures that the final output is visually cohesive and realistic.

    , ,
    Read more: HDRI shooting and editing by Xuan Prada and Greg Zaal
  • LUX vs LUMEN vs NITS vs CANDELA – What is the difference

    More details here: Lumens vs Candelas (candle) vs Lux vs FootCandle vs Watts vs Irradiance vs Illuminance

     

     

     

     

    https://www.inhouseav.com.au/blog/beginners-guide-nits-lumens-brightness/

     

     

    Candela

     

    Candela is the basic unit of measure of the entire volume of light intensity from any point in a single direction from a light source. Note the detail: it measures the total volume of light within a certain beam angle and direction.
    While the luminance of starlight is around 0.001 cd/m2, that of a sunlit scene is around 100,000 cd/m2, which is a hundred millions times higher. The luminance of the sun itself is approximately 1,000,000,000 cd/m2.

     

    NIT

     

    https://en.wikipedia.org/wiki/Candela_per_square_metre

     

    The candela per square metre (symbol: cd/m2) is the unit of luminance in the International System of Units (SI). The unit is based on the candela, the SI unit of luminous intensity, and the square metre, the SI unit of area. The nit (symbol: nt) is a non-SI name also used for this unit (1 nt = 1 cd/m2).[1] The term nit is believed to come from the Latin word nitēre, “to shine”. As a measure of light emitted per unit area, this unit is frequently used to specify the brightness of a display device.

    NIT and cd/m2 (candela power) represent the same thing and can be used interchangeably. One nit is equivalent to one candela per square meter, where the candela is the amount of light which has been emitted by a common tallow candle, but NIT is not part of the International System of Units (abbreviated SI, from Systeme International, in French).

    It’s easiest to think of a TV as emitting light directly, in much the same way as the Sun does. Nits are simply the measurement of the level of light (luminance) in a given area which the emitting source sends to your eyes or a camera sensor.

    The Nit can be considered a unit of visible-light intensity which is often used to specify the brightness level of an LCD.

    1 Nit is approximately equal to 3.426 Lumens. To work out a comparable number of Nits to Lumens, you need to multiply the number of Nits by 3.426. If you know the number of Lumens, and wish to know the Nits, simply divide the number of Lumens by 3.426.

    Most consumer desktop LCDs have Nits of 200 to 300, the average TV most likely has an output capability of between 100 and 200 Nits, and an HDR TV ranges from 400 to 1,500 Nits.
    Virtual Production sets currently sport around 6000 NIT ceiling and 1000 NIT wall panels.

     

    The ambient brightness of a sunny day with clear blue skies is between 7000-10,000 nits (between 3000-7000 nits for overcast skies and indirect sunlight).
    A bright sunny day can have specular highlights that reach over 100,000 nits. Direct sunlight is around 1,600,000,000 nits.
    10,000 nits is also the typical brightness of a fluorescent tube – bright, but not painful to look at.

     

     

    https://www.displaydaily.com/article/display-daily/dolby-vision-vs-hdr10-clarified

    Tests showed that a “black level” of 0.005 nits (cd/m²) satisfied the vast majority of viewers. While 0.005 nits is very close to true black, Griffis says Dolby can go down to a black of 0.0001 nits, even though there is no need or ability for displays to get that dark today.
    How bright is white? Dolby says the range of 0.005 nits – 10,000 nits satisfied 84% of the viewers in their viewing tests.
    The brightest consumer HDR displays today are about 1,500 nits. Professional displays where HDR content is color-graded can achieve up to 4,000 nits peak brightness.

    High brightness that would be in danger of damaging the eye would be in the neighborhood of 250,000 nits.

     

    Lumens

     

    Lumen is a measure of how much light is emitted (luminance, luminous flux) by an object. It indicates the total potential amount of light from a light source that is visible to the human eye.
    Lumen is commonly used in the context of light bulbs or video-projectors as a metric for their brightness power.

    Lumen is used to describe light output, and about video projectors, it is commonly referred to as ANSI Lumens. Simply put, lumens is how to find out how bright a LED display is. The higher the lumens, the brighter to display!

    Technically speaking, a Lumen is the SI unit of luminous flux, which is equal to the amount of light which is emitted per second in a unit solid angle of one steradian from a uniform source of one-candela intensity radiating in all directions.

     

    LUX

     

    Lux (lx) or often Illuminance, is a photometric unit along a given area, which takes in account the sensitivity of human eye to different wavelenghts. It is the measure of light at a specific distance within a specific area at that distance. Often used to measure the incidental sun’s intensity.

     

    , ,
    Read more: LUX vs LUMEN vs NITS vs CANDELA – What is the difference

Collections
| Explore posts
| Design And Composition
| Featured AI

Popular Searches
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke




Subscribe to PixelSham.com RSS for free
Subscribe to PixelSham.com RSS for free