COLOR

  • Image rendering bit depth

    The terms 16-bit, 16-bit float, and 32-bit refer to different data formats used to store and represent image information, as bits per pixel.

     

    https://en.wikipedia.org/wiki/Color_depth

     

    In color technology, color depth also known as bit depth, is either the number of bits used to indicate the color of a single pixel, OR the number of bits used for each color component of a single pixel.

     

    When referring to a pixel, the concept can be defined as bits per pixel (bpp).

     

    When referring to a color component, the concept can be defined as bits per component, bits per channel, bits per color (all three abbreviated bpc), and also bits per pixel component, bits per color channel or bits per sample (bps). Modern standards tend to use bits per component, but historical lower-depth systems used bits per pixel more often.

     

    Color depth is only one aspect of color representation, expressing the precision with which the amount of each primary can be expressed; the other aspect is how broad a range of colors can be expressed (the gamut). The definition of both color precision and gamut is accomplished with a color encoding specification which assigns a digital code value to a location in a color space.

     

    (more…)

    ,
    Read more: Image rendering bit depth
  • What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?

    https://www.discovery.com/science/mexapixels-in-human-eye

    About 576 megapixels for the entire field of view.

     

    Consider a view in front of you that is 90 degrees by 90 degrees, like looking through an open window at a scene. The number of pixels would be:
    90 degrees * 60 arc-minutes/degree * 1/0.3 * 90 * 60 * 1/0.3 = 324,000,000 pixels (324 megapixels).

     

    At any one moment, you actually do not perceive that many pixels, but your eye moves around the scene to see all the detail you want. But the human eye really sees a larger field of view, close to 180 degrees. Let’s be conservative and use 120 degrees for the field of view. Then we would see:

    120 * 120 * 60 * 60 / (0.3 * 0.3) = 576 megapixels.

    Or.

    7 megapixels for the 2 degree focus arc… + 1 megapixel for the rest.

    https://clarkvision.com/articles/eye-resolution.html

     

    Details in the post

    (more…)

    , ,
    Read more: What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?
  • A Brief History of Color in Art

    www.artsy.net/article/the-art-genome-project-a-brief-history-of-color-in-art

    Of all the pigments that have been banned over the centuries, the color most missed by painters is likely Lead White.

    This hue could capture and reflect a gleam of light like no other, though its production was anything but glamorous. The 17th-century Dutch method for manufacturing the pigment involved layering cow and horse manure over lead and vinegar. After three months in a sealed room, these materials would combine to create flakes of pure white. While scientists in the late 19th century identified lead as poisonous, it wasn’t until 1978 that the United States banned the production of lead white paint.

    More reading:
    www.canva.com/learn/color-meanings/

    https://www.infogrades.com/history-events-infographics/bizarre-history-of-colors/

    ,
    Read more: A Brief History of Color in Art
  • No one could see the colour blue until modern times

    https://www.businessinsider.com/what-is-blue-and-how-do-we-see-color-2015-2

     

    The way that humans see the world… until we have a way to describe something, even something so fundamental as a colour, we may not even notice that something it’s there.

     

    Ancient languages didn’t have a word for blue — not Greek, not Chinese, not Japanese, not Hebrew, not Icelandic cultures. And without a word for the colour, there’s evidence that they may not have seen it at all.

    https://www.wnycstudios.org/story/211119-colors

     

    Every language first had a word for black and for white, or dark and light. The next word for a colour to come into existence — in every language studied around the world — was red, the colour of blood and wine.

    After red, historically, yellow appears, and later, green (though in a couple of languages, yellow and green switch places). The last of these colours to appear in every language is blue.

     

    The only ancient culture to develop a word for blue was the Egyptians — and as it happens, they were also the only culture that had a way to produce a blue dye.

    https://mymodernmet.com/shades-of-blue-color-history/

     

    Considered to be the first ever synthetically produced color pigment, Egyptian blue (also known as cuprorivaite) was created around 2,200 B.C. It was made from ground limestone mixed with sand and a copper-containing mineral, such as azurite or malachite, which was then heated between 1470 and 1650°F. The result was an opaque blue glass which then had to be crushed and combined with thickening agents such as egg whites to create a long-lasting paint or glaze.

     

     

    If you think about it, blue doesn’t appear much in nature — there aren’t animals with blue pigments (except for one butterfly, Obrina Olivewing, all animals generate blue through light scattering), blue eyes are rare (also blue through light scattering), and blue flowers are mostly human creations. There is, of course, the sky, but is that really blue?

     

     

    So before we had a word for it, did people not naturally see blue? Do you really see something if you don’t have a word for it?

     

    A researcher named Jules Davidoff traveled to Namibia to investigate this, where he conducted an experiment with the Himba tribe, who speak a language that has no word for blue or distinction between blue and green. When shown a circle with 11 green squares and one blue, they couldn’t pick out which one was different from the others.

     

    When looking at a circle of green squares with only one slightly different shade, they could immediately spot the different one. Can you?

     

    Davidoff says that without a word for a colour, without a way of identifying it as different, it’s much harder for us to notice what’s unique about it — even though our eyes are physically seeing the blocks it in the same way.

     

    Further research brought to wider discussions about color perception in humans. Everything that we make is based on the fact that humans are trichromatic. The television only has 3 colors. Our color printers have 3 different colors. But some people, and in specific some women seemed to be more sensible to color differences… mainly because they’re just more aware or – because of the job that they do.

    Eventually this brought to the discovery of a small percentage of the population, referred to as tetrachromats, which developed an extra cone sensitivity to yellow, likely due to gene modifications.

    The interesting detail about these is that even between tetrachromats, only the ones that had a reason to develop, label and work with extra color sensitivity actually developed the ability to use their native skills.

     

    So before blue became a common concept, maybe humans saw it. But it seems they didn’t know they were seeing it.

    If you see something yet can’t see it, does it exist? Did colours come into existence over time? Not technically, but our ability to notice them… may have…

     

    , ,
    Read more: No one could see the colour blue until modern times
  • Black Body color aka the Planckian Locus curve for white point eye perception

    http://en.wikipedia.org/wiki/Black-body_radiation

     

    Black-body radiation is the type of electromagnetic radiation within or surrounding a body in thermodynamic equilibrium with its environment, or emitted by a black body (an opaque and non-reflective body) held at constant, uniform temperature. The radiation has a specific spectrum and intensity that depends only on the temperature of the body.

     

    A black-body at room temperature appears black, as most of the energy it radiates is infra-red and cannot be perceived by the human eye. At higher temperatures, black bodies glow with increasing intensity and colors that range from dull red to blindingly brilliant blue-white as the temperature increases.

    The Black Body Ultraviolet Catastrophe Experiment

     

    In photography, color temperature describes the spectrum of light which is radiated from a “blackbody” with that surface temperature. A blackbody is an object which absorbs all incident light — neither reflecting it nor allowing it to pass through.

     

    The Sun closely approximates a black-body radiator. Another rough analogue of blackbody radiation in our day to day experience might be in heating a metal or stone: these are said to become “red hot” when they attain one temperature, and then “white hot” for even higher temperatures. Similarly, black bodies at different temperatures also have varying color temperatures of “white light.”

     

    Despite its name, light which may appear white does not necessarily contain an even distribution of colors across the visible spectrum.

     

    Although planets and stars are neither in thermal equilibrium with their surroundings nor perfect black bodies, black-body radiation is used as a first approximation for the energy they emit. Black holes are near-perfect black bodies, and it is believed that they emit black-body radiation (called Hawking radiation), with a temperature that depends on the mass of the hole.

     

    , , ,
    Read more: Black Body color aka the Planckian Locus curve for white point eye perception

LIGHTING

Collections
| Explore posts
| Design And Composition
| Featured AI

Popular Searches
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke




Subscribe to PixelSham.com RSS for free
Subscribe to PixelSham.com RSS for free