COLOR

  • Scene Referred vs Display Referred color workflows

    Display Referred it is tied to the target hardware, as such it bakes color requirements into every type of media output request.

    Scene Referred uses a common unified wide gamut and targeting audience through CDL and DI libraries instead.
    So that color information stays untouched and only “transformed” as/when needed.

     

     

    Sources:
    – Victor Perez – Color Management Fundamentals & ACES Workflows in Nuke
    – https://z-fx.nl/ColorspACES.pdf
    – Wicus

     

    , ,
    Read more: Scene Referred vs Display Referred color workflows
  • Björn Ottosson – OKHSV and OKHSL – Two new color spaces for color picking

    https://bottosson.github.io/misc/colorpicker

     

    https://bottosson.github.io/posts/colorpicker/

     

    https://www.smashingmagazine.com/2024/10/interview-bjorn-ottosson-creator-oklab-color-space/

     

    One problem with sRGB is that in a gradient between blue and white, it becomes a bit purple in the middle of the transition. That’s because sRGB really isn’t created to mimic how the eye sees colors; rather, it is based on how CRT monitors work. That means it works with certain frequencies of red, green, and blue, and also the non-linear coding called gamma. It’s a miracle it works as well as it does, but it’s not connected to color perception. When using those tools, you sometimes get surprising results, like purple in the gradient.

     

     

    There were also attempts to create simple models matching human perception based on XYZ, but as it turned out, it’s not possible to model all color vision that way. Perception of color is incredibly complex and depends, among other things, on whether it is dark or light in the room and the background color it is against. When you look at a photograph, it also depends on what you think the color of the light source is. The dress is a typical example of color vision being very context-dependent. It is almost impossible to model this perfectly.

     

    I based Oklab on two other color spaces, CIECAM16 and IPT. I used the lightness and saturation prediction from CIECAM16, which is a color appearance model, as a target. I actually wanted to use the datasets used to create CIECAM16, but I couldn’t find them.

     

    IPT was designed to have better hue uniformity. In experiments, they asked people to match light and dark colors, saturated and unsaturated colors, which resulted in a dataset for which colors, subjectively, have the same hue. IPT has a few other issues but is the basis for hue in Oklab.

     

    In the Munsell color system, colors are described with three parameters, designed to match the perceived appearance of colors: Hue, Chroma and Value. The parameters are designed to be independent and each have a uniform scale. This results in a color solid with an irregular shape. The parameters are designed to be independent and each have a uniform scale. This results in a color solid with an irregular shape. Modern color spaces and models, such as CIELAB, Cam16 and Björn Ottosson own Oklab, are very similar in their construction.

     

     

    By far the most used color spaces today for color picking are HSL and HSV, two representations introduced in the classic 1978 paper “Color Spaces for Computer Graphics”. HSL and HSV designed to roughly correlate with perceptual color properties while being very simple and cheap to compute.

     

    Today HSL and HSV are most commonly used together with the sRGB color space.

     

     

    One of the main advantages of HSL and HSV over the different Lab color spaces is that they map the sRGB gamut to a cylinder. This makes them easy to use since all parameters can be changed independently, without the risk of creating colors outside of the target gamut.

     

     

    The main drawback on the other hand is that their properties don’t match human perception particularly well.
    Reconciling these conflicting goals perfectly isn’t possible, but given that HSV and HSL don’t use anything derived from experiments relating to human perception, creating something that makes a better tradeoff does not seem unreasonable.

     

     

    With this new lightness estimate, we are ready to look into the construction of Okhsv and Okhsl.

     

     

    , ,
    Read more: Björn Ottosson – OKHSV and OKHSL – Two new color spaces for color picking
  • What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?

    https://www.discovery.com/science/mexapixels-in-human-eye

    About 576 megapixels for the entire field of view.

     

    Consider a view in front of you that is 90 degrees by 90 degrees, like looking through an open window at a scene. The number of pixels would be:
    90 degrees * 60 arc-minutes/degree * 1/0.3 * 90 * 60 * 1/0.3 = 324,000,000 pixels (324 megapixels).

     

    At any one moment, you actually do not perceive that many pixels, but your eye moves around the scene to see all the detail you want. But the human eye really sees a larger field of view, close to 180 degrees. Let’s be conservative and use 120 degrees for the field of view. Then we would see:

    120 * 120 * 60 * 60 / (0.3 * 0.3) = 576 megapixels.

    Or.

    7 megapixels for the 2 degree focus arc… + 1 megapixel for the rest.

    https://clarkvision.com/articles/eye-resolution.html

     

    Details in the post

    (more…)

    , ,
    Read more: What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?
  • Tobia Montanari – Memory Colors: an essential tool for Colorists

    https://www.tobiamontanari.com/memory-colors-an-essential-tool-for-colorists/

     

    “Memory colors are colors that are universally associated with specific objects, elements or scenes in our environment. They are the colors that we expect to see in specific situations: these colors are based on our expectation of how certain objects should look based on our past experiences and memories.

     

    For instance, we associate specific hues, saturation and brightness values with human skintones and a slight variation can significantly affect the way we perceive a scene.

     

    Similarly, we expect blue skies to have a particular hue, green trees to be a specific shade and so on.

     

    Memory colors live inside of our brains and we often impose them onto what we see. By considering them during the grading process, the resulting image will be more visually appealing and won’t distract the viewer from the intended message of the story. Even a slight deviation from memory colors in a movie can create a sense of discordance, ultimately detracting from the viewer’s experience.”

    ,
    Read more: Tobia Montanari – Memory Colors: an essential tool for Colorists
  • Gamma correction

    http://www.normankoren.com/makingfineprints1A.html#Gammabox

     

    https://en.wikipedia.org/wiki/Gamma_correction

     

    http://www.photoscientia.co.uk/Gamma.htm

     

    https://www.w3.org/Graphics/Color/sRGB.html

     

    http://www.eizoglobal.com/library/basics/lcd_display_gamma/index.html

     

    https://forum.reallusion.com/PrintTopic308094.aspx

     

    Basically, gamma is the relationship between the brightness of a pixel as it appears on the screen, and the numerical value of that pixel. Generally Gamma is just about defining relationships.

    Three main types:
    – Image Gamma encoded in images
    – Display Gammas encoded in hardware and/or viewing time
    – System or Viewing Gamma which is the net effect of all gammas when you look back at a final image. In theory this should flatten back to 1.0 gamma.

     

    Our eyes, different camera or video recorder devices do not correctly capture luminance. (they are not linear)
    Different display devices (monitor, phone screen, TV) do not display luminance correctly neither. So, one needs to correct them, therefore the gamma correction function.

    The human perception of brightness, under common illumination conditions (not pitch black nor blindingly bright), follows an approximate power function (note: no relation to the gamma function), with greater sensitivity to relative differences between darker tones than between lighter ones, consistent with the Stevens’ power law for brightness perception. If images are not gamma-encoded, they allocate too many bits or too much bandwidth to highlights that humans cannot differentiate, and too few bits or too little bandwidth to shadow values that humans are sensitive to and would require more bits/bandwidth to maintain the same visual quality.

    https://blog.amerlux.com/4-things-architects-should-know-about-lumens-vs-perceived-brightness/

    cones manage color receptivity, rods determine how large our pupils should be. The larger (more dilated) our pupils are, the more light enters our eyes. In dark situations, our rods dilate our pupils so we can see better. This impacts how we perceive brightness.

     

    https://www.cambridgeincolour.com/tutorials/gamma-correction.htm

    A gamma encoded image has to have “gamma correction” applied when it is viewed — which effectively converts it back into light from the original scene. In other words, the purpose of gamma encoding is for recording the image — not for displaying the image. Fortunately this second step (the “display gamma”) is automatically performed by your monitor and video card. The following diagram illustrates how all of this fits together:

     

    Display gamma
    The display gamma can be a little confusing because this term is often used interchangeably with gamma correction, since it corrects for the file gamma. This is the gamma that you are controlling when you perform monitor calibration and adjust your contrast setting. Fortunately, the industry has converged on a standard display gamma of 2.2, so one doesn’t need to worry about the pros/cons of different values.

     

    Gamma encoding of images is used to optimize the usage of bits when encoding an image, or bandwidth used to transport an image, by taking advantage of the non-linear manner in which humans perceive light and color. Human response to luminance is also biased. Especially sensible to dark areas.
    Thus, the human visual system has a non-linear response to the power of the incoming light, so a fixed increase in power will not have a fixed increase in perceived brightness.
    We perceive a value as half bright when it is actually 18% of the original intensity not 50%. As such, our perception is not linear.

     

    You probably already know that a pixel can have any ‘value’ of Red, Green, and Blue between 0 and 255, and you would therefore think that a pixel value of 127 would appear as half of the maximum possible brightness, and that a value of 64 would represent one-quarter brightness, and so on. Well, that’s just not the case.

     

    Pixar Color Management
    https://renderman.pixar.com/color-management


    – Why do we need linear gamma?
    Because light works linearly and therefore only works properly when it lights linear values.

     

    – Why do we need to view in sRGB?
    Because the resulting linear image in not suitable for viewing, but contains all the proper data. Pixar’s IT viewer can compensate by showing the rendered image through a sRGB look up table (LUT), which is identical to what will be the final image after the sRGB gamma curve is applied in post.

    This would be simple enough if every software would play by the same rules, but they don’t. In fact, the default gamma workflow for many 3D software is incorrect. This is where the knowledge of a proper imaging workflow comes in to save the day.

     

    Cathode-ray tubes have a peculiar relationship between the voltage applied to them, and the amount of light emitted. It isn’t linear, and in fact it follows what’s called by mathematicians and other geeks, a ‘power law’ (a number raised to a power). The numerical value of that power is what we call the gamma of the monitor or system.

     

    Thus. Gamma describes the nonlinear relationship between the pixel levels in your computer and the luminance of your monitor (the light energy it emits) or the reflectance of your prints. The equation is,

    Luminance = C * value^gamma + black level

    – C is set by the monitor Contrast control.

    – Value is the pixel level normalized to a maximum of 1. For an 8 bit monitor with pixel levels 0 – 255, value = (pixel level)/255.

     

    – Black level is set by the (misnamed) monitor Brightness control. The relationship is linear if gamma = 1. The chart illustrates the relationship for gamma = 1, 1.5, 1.8 and 2.2 with C = 1 and black level = 0.

     

    Gamma affects middle tones; it has no effect on black or white. If gamma is set too high, middle tones appear too dark. Conversely, if it’s set too low, middle tones appear too light.

     

    The native gamma of monitors– the relationship between grid voltage and luminance– is typically around 2.5, though it can vary considerably. This is well above any of the display standards, so you must be aware of gamma and correct it.

     

    A display gamma of 2.2 is the de facto standard for the Windows operating system and the Internet-standard sRGB color space.

     

    The old standard for Mcintosh and prepress file interchange is 1.8. It is now 2.2 as well.

     

    Video cameras have gammas of approximately 0.45– the inverse of 2.2. The viewing or system gamma is the product of the gammas of all the devices in the system– the image acquisition device (film+scanner or digital camera), color lookup table (LUT), and monitor. System gamma is typically between 1.1 and 1.5. Viewing flare and other factor make images look flat at system gamma = 1.0.

     

    Most laptop LCD screens are poorly suited for critical image editing because gamma is extremely sensitive to viewing angle.

     

    More about screens

    https://www.cambridgeincolour.com/tutorials/gamma-correction.htm

    CRT Monitors. Due to an odd bit of engineering luck, the native gamma of a CRT is 2.5 — almost the inverse of our eyes. Values from a gamma-encoded file could therefore be sent straight to the screen and they would automatically be corrected and appear nearly OK. However, a small gamma correction of ~1/1.1 needs to be applied to achieve an overall display gamma of 2.2. This is usually already set by the manufacturer’s default settings, but can also be set during monitor calibration.

    LCD Monitors. LCD monitors weren’t so fortunate; ensuring an overall display gamma of 2.2 often requires substantial corrections, and they are also much less consistent than CRT’s. LCDs therefore require something called a look-up table (LUT) in order to ensure that input values are depicted using the intended display gamma (amongst other things). See the tutorial on monitor calibration: look-up tables for more on this topic.

    About black level (brightness). Your monitor’s brightness control (which should actually be called black level) can be adjusted using the mostly black pattern on the right side of the chart. This pattern contains two dark gray vertical bars, A and B, which increase in luminance with increasing gamma. (If you can’t see them, your black level is way low.) The left bar (A) should be just above the threshold of visibility opposite your chosen gamma (2.2 or 1.8)– it should be invisible where gamma is lower by about 0.3. The right bar (B) should be distinctly visible: brighter than (A), but still very dark. This chart is only for monitors; it doesn’t work on printed media.

     

    The 1.8 and 2.2 gray patterns at the bottom of the image represent a test of monitor quality and calibration. If your monitor is functioning properly and calibrated to gamma = 2.2 or 1.8, the corresponding pattern will appear smooth neutral gray when viewed from a distance. Any waviness, irregularity, or color banding indicates incorrect monitor calibration or poor performance.

     

    Another test to see whether one’s computer monitor is properly hardware adjusted and can display shadow detail in sRGB images properly, they should see the left half of the circle in the large black square very faintly but the right half should be clearly visible. If not, one can adjust their monitor’s contrast and/or brightness setting. This alters the monitor’s perceived gamma. The image is best viewed against a black background.

     

    This procedure is not suitable for calibrating or print-proofing a monitor. It can be useful for making a monitor display sRGB images approximately correctly, on systems in which profiles are not used (for example, the Firefox browser prior to version 3.0 and many others) or in systems that assume untagged source images are in the sRGB colorspace.

     

    On some operating systems running the X Window System, one can set the gamma correction factor (applied to the existing gamma value) by issuing the command xgamma -gamma 0.9 for setting gamma correction factor to 0.9, and xgamma for querying current value of that factor (the default is 1.0). In OS X systems, the gamma and other related screen calibrations are made through the System Preference

     

    https://www.kinematicsoup.com/news/2016/6/15/gamma-and-linear-space-what-they-are-how-they-differ

    Linear color space means that numerical intensity values correspond proportionally to their perceived intensity. This means that the colors can be added and multiplied correctly. A color space without that property is called ”non-linear”. Below is an example where an intensity value is doubled in a linear and a non-linear color space. While the corresponding numerical values in linear space are correct, in the non-linear space (gamma = 0.45, more on this later) we can’t simply double the value to get the correct intensity.

     

    The need for gamma arises for two main reasons: The first is that screens have been built with a non-linear response to intensity. The other is that the human eye can tell the difference between darker shades better than lighter shades. This means that when images are compressed to save space, we want to have greater accuracy for dark intensities at the expense of lighter intensities. Both of these problems are resolved using gamma correction, which is to say the intensity of every pixel in an image is put through a power function. Specifically, gamma is the name given to the power applied to the image.

     

    CRT screens, simply by how they work, apply a gamma of around 2.2, and modern LCD screens are designed to mimic that behavior. A gamma of 2.2, the reciprocal of 0.45, when applied to the brightened images will darken them, leaving the original image.

    , , , ,
    Read more: Gamma correction
  • Christopher Butler – Understanding the Eye-Mind Connection – Vision is a mental process

    https://www.chrbutler.com/understanding-the-eye-mind-connection

     

    The intricate relationship between the eyes and the brain, often termed the eye-mind connection, reveals that vision is predominantly a cognitive process. This understanding has profound implications for fields such as design, where capturing and maintaining attention is paramount. This essay delves into the nuances of visual perception, the brain’s role in interpreting visual data, and how this knowledge can be applied to effective design strategies.

     

    This cognitive aspect of vision is evident in phenomena such as optical illusions, where the brain interprets visual information in a way that contradicts physical reality. These illusions underscore that what we “see” is not merely a direct recording of the external world but a constructed experience shaped by cognitive processes.

     

    Understanding the cognitive nature of vision is crucial for effective design. Designers must consider how the brain processes visual information to create compelling and engaging visuals. This involves several key principles:

    1. Attention and Engagement
    2. Visual Hierarchy
    3. Cognitive Load Management
    4. Context and Meaning

     

     

    , , , ,
    Read more: Christopher Butler – Understanding the Eye-Mind Connection – Vision is a mental process
  • GretagMacbeth Color Checker Numeric Values and Middle Gray

    The human eye perceives half scene brightness not as the linear 50% of the present energy (linear nature values) but as 18% of the overall brightness. We are biased to perceive more information in the dark and contrast areas. A Macbeth chart helps with calibrating back into a photographic capture into this “human perspective” of the world.

     

    https://en.wikipedia.org/wiki/Middle_gray

     

    In photography, painting, and other visual arts, middle gray or middle grey is a tone that is perceptually about halfway between black and white on a lightness scale in photography and printing, it is typically defined as 18% reflectance in visible light

     

    Light meters, cameras, and pictures are often calibrated using an 18% gray card[4][5][6] or a color reference card such as a ColorChecker. On the assumption that 18% is similar to the average reflectance of a scene, a grey card can be used to estimate the required exposure of the film.

     

    https://en.wikipedia.org/wiki/ColorChecker

     

     

    https://photo.stackexchange.com/questions/968/how-can-i-correctly-measure-light-using-a-built-in-camera-meter

     

    The exposure meter in the camera does not know whether the subject itself is bright or not. It simply measures the amount of light that comes in, and makes a guess based on that. The camera will aim for 18% gray independently, meaning if you take a photo of an entirely white surface, and an entirely black surface you should get two identical images which both are gray (at least in theory). Thus enters the Macbeth chart.

     

    <!–more–>

     

    Note that Chroma Key Green is reasonably close to an 18% gray reflectance.

    http://www.rags-int-inc.com/PhotoTechStuff/MacbethTarget/

     

    No Camera Data

     

    https://upload.wikimedia.org/wikipedia/commons/b/b4/CIE1931xy_ColorChecker_SMIL.svg

     

    RGB coordinates of the Macbeth ColorChecker

     

    https://pdfs.semanticscholar.org/0e03/251ad1e6d3c3fb9cb0b1f9754351a959e065.pdf

    , , , ,
    Read more: GretagMacbeth Color Checker Numeric Values and Middle Gray
  • Tim Kang – calibrated white light values in sRGB color space

    https://www.linkedin.com/posts/timkang_colorimetry-cinematography-nerdalert-activity-7058330978007584769-9xln

     

    8bit sRGB encoded
    2000K 255 139 22
    2700K 255 172 89
    3000K 255 184 109
    3200K 255 190 122
    4000K 255 211 165
    4300K 255 219 178
    D50 255 235 205
    D55 255 243 224
    D5600 255 244 227
    D6000 255 249 240
    D65 255 255 255
    D10000 202 221 255
    D20000 166 196 255

    8bit Rec709 Gamma 2.4
    2000K 255 145 34
    2700K 255 177 97
    3000K 255 187 117
    3200K 255 193 129
    4000K 255 214 170
    4300K 255 221 182
    D50 255 236 208
    D55 255 243 226
    D5600 255 245 229
    D6000 255 250 241
    D65 255 255 255
    D10000 204 222 255
    D20000 170 199 255

    8bit Display P3 encoded
    2000K 255 154 63
    2700K 255 185 109
    3000K 255 195 127
    3200K 255 201 138
    4000K 255 219 176
    4300K 255 225 187
    D50 255 239 212
    D55 255 245 228
    D5600 255 246 231
    D6000 255 251 242
    D65 255 255 255
    D10000 208 223 255
    D20000 175 199 255

    10bit Rec2020 PQ (100 nits)
    2000K 520 435 273
    2700K 520 466 358
    3000K 520 475 384
    3200K 520 480 399
    4000K 520 495 446
    4300K 520 500 458
    D50 520 510 482
    D55 520 514 497
    D5600 520 514 500
    D6000 520 517 509
    D65 520 520 520
    D10000 479 489 520
    D20000 448 464 520

     

    ,
    Read more: Tim Kang – calibrated white light values in sRGB color space

LIGHTING