COLOR

  • OLED vs QLED – What TV is better?

     

    Supported by LG, Philips, Panasonic and Sony sell the OLED system TVs.
    OLED stands for “organic light emitting diode.”
    It is a fundamentally different technology from LCD, the major type of TV today.
    OLED is “emissive,” meaning the pixels emit their own light.

     

    Samsung is branding its best TVs with a new acronym: “QLED”
    QLED (according to Samsung) stands for “quantum dot LED TV.”
    It is a variation of the common LED LCD, adding a quantum dot film to the LCD “sandwich.”
    QLED, like LCD, is, in its current form, “transmissive” and relies on an LED backlight.

     

    OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks.

    QLED, as an improvement over OLED, significantly improves the picture quality. QLED can produce an even wider range of colors than OLED, which says something about this new tech. QLED is also known to produce up to 40% higher luminance efficiency than OLED technology. Further, many tests conclude that QLED is far more efficient in terms of power consumption than its predecessor, OLED.

     

    When analyzing TVs color, it may be beneficial to consider at least 3 elements:
    “Color Depth”, “Color Gamut”, and “Dynamic Range”.

     

    Color Depth (or “Bit-Depth”, e.g. 8-bit, 10-bit, 12-bit) determines how many distinct color variations (tones/shades) can be viewed on a given display.

     

    Color Gamut (e.g. WCG) determines which specific colors can be displayed from a given “Color Space” (Rec.709, Rec.2020, DCI-P3) (i.e. the color range).

     

    Dynamic Range (SDR, HDR) determines the luminosity range of a specific color – from its darkest shade (or tone) to its brightest.

     

    The overall brightness range of a color will be determined by a display’s “contrast ratio”, that is, the ratio of luminance between the darkest black that can be produced and the brightest white.

     

    Color Volume is the “Color Gamut” + the “Dynamic/Luminosity Range”.
    A TV’s Color Volume will not only determine which specific colors can be displayed (the color range) but also that color’s luminosity range, which will have an affect on its “brightness”, and “colorfulness” (intensity and saturation).

     

    The better the colour volume in a TV, the closer to life the colours appear.

     

    QLED TV can express nearly all of the colours in the DCI-P3 colour space, and of those colours, express 100% of the colour volume, thereby producing an incredible range of colours.

     

    With OLED TV, when the image is too bright, the percentage of the colours in the colour volume produced by the TV drops significantly. The colours get washed out and can only express around 70% colour volume, making the picture quality drop too.

     

    Note. OLED TV uses organic material, so it may lose colour expression as it ages.

     

    Resources for more reading and comparison below

    www.avsforum.com/forum/166-lcd-flat-panel-displays/2812161-what-color-volume.html

     

    www.newtechnologytv.com/qled-vs-oled/

     

    news.samsung.com/za/qled-tv-vs-oled-tv

     

    www.cnet.com/news/qled-vs-oled-samsungs-tv-tech-and-lgs-tv-tech-are-not-the-same/

     

    ,
    Read more: OLED vs QLED – What TV is better?
  • No one could see the colour blue until modern times

    https://www.businessinsider.com/what-is-blue-and-how-do-we-see-color-2015-2

     

    The way that humans see the world… until we have a way to describe something, even something so fundamental as a colour, we may not even notice that something it’s there.

     

    Ancient languages didn’t have a word for blue — not Greek, not Chinese, not Japanese, not Hebrew, not Icelandic cultures. And without a word for the colour, there’s evidence that they may not have seen it at all.

    https://www.wnycstudios.org/story/211119-colors

     

    Every language first had a word for black and for white, or dark and light. The next word for a colour to come into existence — in every language studied around the world — was red, the colour of blood and wine.

    After red, historically, yellow appears, and later, green (though in a couple of languages, yellow and green switch places). The last of these colours to appear in every language is blue.

     

    The only ancient culture to develop a word for blue was the Egyptians — and as it happens, they were also the only culture that had a way to produce a blue dye.

    https://mymodernmet.com/shades-of-blue-color-history/

     

    Considered to be the first ever synthetically produced color pigment, Egyptian blue (also known as cuprorivaite) was created around 2,200 B.C. It was made from ground limestone mixed with sand and a copper-containing mineral, such as azurite or malachite, which was then heated between 1470 and 1650°F. The result was an opaque blue glass which then had to be crushed and combined with thickening agents such as egg whites to create a long-lasting paint or glaze.

     

     

    If you think about it, blue doesn’t appear much in nature — there aren’t animals with blue pigments (except for one butterfly, Obrina Olivewing, all animals generate blue through light scattering), blue eyes are rare (also blue through light scattering), and blue flowers are mostly human creations. There is, of course, the sky, but is that really blue?

     

     

    So before we had a word for it, did people not naturally see blue? Do you really see something if you don’t have a word for it?

     

    A researcher named Jules Davidoff traveled to Namibia to investigate this, where he conducted an experiment with the Himba tribe, who speak a language that has no word for blue or distinction between blue and green. When shown a circle with 11 green squares and one blue, they couldn’t pick out which one was different from the others.

     

    When looking at a circle of green squares with only one slightly different shade, they could immediately spot the different one. Can you?

     

    Davidoff says that without a word for a colour, without a way of identifying it as different, it’s much harder for us to notice what’s unique about it — even though our eyes are physically seeing the blocks it in the same way.

     

    Further research brought to wider discussions about color perception in humans. Everything that we make is based on the fact that humans are trichromatic. The television only has 3 colors. Our color printers have 3 different colors. But some people, and in specific some women seemed to be more sensible to color differences… mainly because they’re just more aware or – because of the job that they do.

    Eventually this brought to the discovery of a small percentage of the population, referred to as tetrachromats, which developed an extra cone sensitivity to yellow, likely due to gene modifications.

    The interesting detail about these is that even between tetrachromats, only the ones that had a reason to develop, label and work with extra color sensitivity actually developed the ability to use their native skills.

     

    So before blue became a common concept, maybe humans saw it. But it seems they didn’t know they were seeing it.

    If you see something yet can’t see it, does it exist? Did colours come into existence over time? Not technically, but our ability to notice them… may have…

     

    , ,
    Read more: No one could see the colour blue until modern times
  • Björn Ottosson – OKlch color space

    https://abhisaha.com/blog/interactive-post-oklch-color-space

     

    Björn Ottosson proposed OKlch in 2020 to create a color space that can closely mimic how color is perceived by the human eye, predicting perceived lightness, chroma, and hue.

     

    The OK in OKLCH stands for Optimal Color.

    • LLightness (the perceived brightness of the color)
    • CChroma (the intensity or saturation of the color)
    • HHue (the actual color, such as red, blue, green, etc.)

     

     

    Also read:

     

     

     

    Read more: Björn Ottosson – OKlch color space

LIGHTING

  • Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurements

    Also see: https://www.pixelsham.com/2015/05/16/how-aperture-shutter-speed-and-iso-affect-your-photos/

     

    In photography, exposure value (EV) is a number that represents a combination of a camera’s shutter speed and f-number, such that all combinations that yield the same exposure have the same EV (for any fixed scene luminance).

     

     

    The EV concept was developed in an attempt to simplify choosing among combinations of equivalent camera settings. Although all camera settings with the same EV nominally give the same exposure, they do not necessarily give the same picture. EV is also used to indicate an interval on the photographic exposure scale. 1 EV corresponding to a standard power-of-2 exposure step, commonly referred to as a stop

     

    EV 0 corresponds to an exposure time of 1 sec and a relative aperture of f/1.0. If the EV is known, it can be used to select combinations of exposure time and f-number.

     

    https://www.streetdirectory.com/travel_guide/141307/photography/exposure_value_ev_and_exposure_compensation.html

    Note EV does not equal to photographic exposure. Photographic Exposure is defined as how much light hits the camera’s sensor. It depends on the camera settings mainly aperture and shutter speed. Exposure value (known as EV) is a number that represents the exposure setting of the camera.

     

    Thus, strictly, EV is not a measure of luminance (indirect or reflected exposure) or illuminance (incidental exposure); rather, an EV corresponds to a luminance (or illuminance) for which a camera with a given ISO speed would use the indicated EV to obtain the nominally correct exposure. Nonetheless, it is common practice among photographic equipment manufacturers to express luminance in EV for ISO 100 speed, as when specifying metering range or autofocus sensitivity.

     

    The exposure depends on two things: how much light gets through the lenses to the camera’s sensor and for how long the sensor is exposed. The former is a function of the aperture value while the latter is a function of the shutter speed. Exposure value is a number that represents this potential amount of light that could hit the sensor. It is important to understand that exposure value is a measure of how exposed the sensor is to light and not a measure of how much light actually hits the sensor. The exposure value is independent of how lit the scene is. For example a pair of aperture value and shutter speed represents the same exposure value both if the camera is used during a very bright day or during a dark night.

     

    Each exposure value number represents all the possible shutter and aperture settings that result in the same exposure. Although the exposure value is the same for different combinations of aperture values and shutter speeds the resulting photo can be very different (the aperture controls the depth of field while shutter speed controls how much motion is captured).

    EV 0.0 is defined as the exposure when setting the aperture to f-number 1.0 and the shutter speed to 1 second. All other exposure values are relative to that number. Exposure values are on a base two logarithmic scale. This means that every single step of EV – plus or minus 1 – represents the exposure (actual light that hits the sensor) being halved or doubled.

    https://www.streetdirectory.com/travel_guide/141307/photography/exposure_value_ev_and_exposure_compensation.html

     

    Formula

    https://en.wikipedia.org/wiki/Exposure_value

     

    https://www.scantips.com/lights/math.html

     

    which means   2EV = N² / t

    where

    • N is the relative aperture (f-number) Important: Note that f/stop values must first be squared in most calculations
    • t is the exposure time (shutter speed) in seconds

    EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

    Example: If f/16 and 1/4 second, then this is:

    (N² / t) = (16 × 16 ÷ 1/4) = (16 × 16 × 4) = 1024.

    Log₂(1024) is EV 10. Meaning, 210 = 1024.

     

    Collecting photographic exposure using Light Meters

    https://photo.stackexchange.com/questions/968/how-can-i-correctly-measure-light-using-a-built-in-camera-meter

    The exposure meter in the camera does not know whether the subject itself is bright or not. It simply measures the amount of light that comes in, and makes a guess based on that. The camera will aim for 18% gray, meaning if you take a photo of an entirely white surface, and an entirely black surface you should get two identical images which both are gray (at least in theory)

    https://en.wikipedia.org/wiki/Light_meter

    For reflected-light meters, camera settings are related to ISO speed and subject luminance by the reflected-light exposure equation:

    where

    • N is the relative aperture (f-number)
    • t is the exposure time (“shutter speed”) in seconds
    • L is the average scene luminance
    • S is the ISO arithmetic speed
    • K is the reflected-light meter calibration constant

     

    For incident-light meters, camera settings are related to ISO speed and subject illuminance by the incident-light exposure equation:

    where

    • E is the illuminance (in lux)
    • C is the incident-light meter calibration constant

     

    Two values for K are in common use: 12.5 (Canon, Nikon, and Sekonic) and 14 (Minolta, Kenko, and Pentax); the difference between the two values is approximately 1/6 EV.
    For C a value of 250 is commonly used.

     

    Nonetheless, it is common practice among photographic equipment manufacturers to also express luminance in EV for ISO 100 speed. Using K = 12.5, the relationship between EV at ISO 100 and luminance L is then :

    L = 2(EV-3)

     

    The situation with incident-light meters is more complicated than that for reflected-light meters, because the calibration constant C depends on the sensor type. Illuminance is measured with a flat sensor; a typical value for C is 250 with illuminance in lux. Using C = 250, the relationship between EV at ISO 100 and illuminance E is then :

     

    E = 2.5 * 2(EV)

     

    https://nofilmschool.com/2018/03/want-easier-and-faster-way-calculate-exposure-formula

    Three basic factors go into the exposure formula itself instead: aperture, shutter, and ISO. Plus a light meter calibration constant.

    f-stop²/shutter (in seconds) = lux * ISO/C

     

    If you at least know four of those variables, you’ll be able to calculate the missing value.

    So, say you want to figure out how much light you’re going to need in order to shoot at a certain f-stop. Well, all you do is plug in your values (you should know the f-stop, ISO, and your light meter calibration constant) into the formula below:

    lux = C (f-stop²/shutter (in seconds))/ISO

     

    Exposure Value Calculator:

    https://snapheadshots.com/resources/exposure-and-light-calculator

     

    https://www.scantips.com/lights/exposurecalc.html

     

    https://www.pointsinfocus.com/tools/exposure-settings-ev-calculator/#google_vignette

     

    From that perspective, an exposure stop is a measurement of Exposure and provides a universal linear scale to measure the increase and decrease in light, exposed to the image sensor, due to changes in shutter speed, iso & f-stop.
    +-1 stop is a doubling or halving of the amount of light let in when taking a photo.
    1 EV is just another way to say one stop of exposure change.

     

    One major use of EV (Exposure Value) is just to measure any change of exposure, where one EV implies a change of one stop of exposure. Like when we compensate our picture in the camera.

     

    If the picture comes out too dark, our manual exposure could correct the next one by directly adjusting one of the three exposure controls (f/stop, shutter speed, or ISO). Or if using camera automation, the camera meter is controlling it, but we might apply +1 EV exposure compensation (or +1 EV flash compensation) to make the result goal brighter, as desired. This use of 1 EV is just another way to say one stop of exposure change.

     

    On a perfect day the difference from sampling the sky vs the sun exposure with diffusing spot meters is about 3.2 exposure difference.

     ~15.4 EV for the sun
     ~12.2 EV for the sky
    

    That is as a ballpark. All still influenced by surroundings, accuracy parameters, fov of the sensor…

     

     

     

    EV calculator

    https://www.scantips.com/lights/evchart.html#calc

    http://www.fredparker.com/ultexp1.htm

     

    Exposure value is basically used to indicate an interval on the photographic exposure scale, with a difference of 1 EV corresponding to a standard power-of-2 exposure step, also commonly referred to as a “stop”.

     

    https://contrastly.com/a-guide-to-understanding-exposure-value-ev/

     

    Retrieving photographic exposure from an image

    All you can hope to measure with your camera and some images is the relative reflected luminance. Even if you have the camera settings. https://en.wikipedia.org/wiki/Relative_luminance

     

    If you REALLY want to know the amount of light in absolute radiometric units, you’re going to need to use some kind of absolute light meter or measured light source to calibrate your camera. For references on how to do this, see: Section 2.5 Obtaining Absolute Radiance from http://www.pauldebevec.com/Research/HDR/debevec-siggraph97.pdf

     

    IF you are still trying to gauge relative brightness, the level of the sun in Nuke can vary, but it should be in the thousands. Ie: between 30,000 and 65,0000 rgb value depending on time of the day, season and atmospherics.

     

    The values for a 12 o’clock sun, with the sun sampled at EV 15.5 (shutter 1/30, ISO 100, F22) is 32.000 RGB max values (or 32,000 pixel luminance).
    The thing to keep an eye for is the level of contrast between sunny side/fill side.  The terminator should be quite obvious,  there can be up to 3 stops difference between fill/key in sunny lit objects.

     

    Note: In Foundry’s Nuke, the software will map 18% gray to whatever your center f/stop is set to in the viewer settings (f/8 by default… change that to EV by following the instructions below).
    You can experiment with this by attaching an Exposure node to a Constant set to 0.18, setting your viewer read-out to Spotmeter, and adjusting the stops in the node up and down. You will see that a full stop up or down will give you the respective next value on the aperture scale (f8, f11, f16 etc.).
    One stop doubles or halves the amount or light that hits the filmback/ccd, so everything works in powers of 2.
    So starting with 0.18 in your constant, you will see that raising it by a stop will give you .36 as a floating point number (in linear space), while your f/stop will be f/11 and so on.

    If you set your center stop to 0 (see below) you will get a relative readout in EVs, where EV 0 again equals 18% constant gray.
    Note: make sure to set your Nuke read node to ‘raw data’

     

    In other words. Setting the center f-stop to 0 means that in a neutral plate, the middle gray in the macbeth chart will equal to exposure value 0. EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

     

    To switch Foundry’s Nuke’s SpotMeter to return the EV of an image, click on the main viewport, and then press s, this opens the viewer’s properties. Now set the center f-stop to 0 in there. And the SpotMeter in the viewport will change from aperture and fstops to EV.

     

    If you are trying to gauge the EV from the pixel luminance in the image:
    – Setting the center f-stop to 0 means that in a neutral plate, the middle 18% gray will equal to exposure value 0.
    – So if EV 0 = 0.18 middle gray in nuke which equal to a pixel luminance of 0.18, doubling that value, doubles the EV.

    .18 pixel luminance = 0EV
    .36 pixel luminance = 1EV
    .72 pixel luminance = 2EV
    1.46 pixel luminance = 3EV
    ...
    

     

    This is a Geometric Progression function: xn = ar(n-1)

    The most basic example of this function is 1,2,4,8,16,32,… The sequence starts at 1 and doubles each time, so

    • a=1 (the first term)
    • r=2 (the “common ratio” between terms is a doubling)

    And we get:

    {a, ar, ar2, ar3, … }

    = {1, 1×2, 1×22, 1×23, … }

    = {1, 2, 4, 8, … }

    In this example the function translates to: n = 2(n-1)
    You can graph this curve through this expression: x = 2(y-1)  :

    You can go back and forth between the two values through a geometric progression function and a log function:

    (Note: in a spreadsheet this is: = POWER(2; cell# -1)  and  =LOG(cell#, 2)+1) )

    2(y-1) log2(x)+1
    x y
    1 1
    2 2
    4 3
    8 4
    16 5
    32 6
    64 7
    128 8
    256 9
    512 10
    1024 11
    2048 12
    4096 13

     

    Translating this into a geometric progression between an image pixel luminance and EV:

    (more…)

    , ,
    Read more: Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurements
  • Aputure AL-F7 – dimmable Led Video Light, CRI95+, 3200-9500K

    High CRI of ≥95

    256 LEDs with 45° beam angle

    3200 to 9500K variable color temperature

    1 to 100% Stepless Dimming, 1500 Lux Brightness at 3.3′

    LCD Info Screen. Powered by an L-series battery, D-Tap, or USB-C

    Because the light has a variable color range of 3200 to 9500K, when the light is set to 5500K (daylight balanced) both sets of LEDs are on at full, providing the maximum brightness from this fixture when compared to using the light at 3200 or 9500K.

    The LCD screen provides information on the fixture’s output as well as the charge state of the battery. The screen also indicates whether the adjustment knob is controlling brightness or color temperature. To switch from brightness to CCT or CCT to brightness, just apply a short press to the adjustment knob.

    The included cold shoe ball joint adapter enables mounting the light to your camera’s accessory shoe via the 1/4″-20 threaded hole on the fixture. In addition, the bottom of the cold shoe foot features a 3/8″-16 threaded hole, and includes a 3/8″-16 to 1/4″-20 reducing bushing.

    ,
    Read more: Aputure AL-F7 – dimmable Led Video Light, CRI95+, 3200-9500K
  • Eye retina’s Bipolar Cells, Horizontal Cells, and Photoreceptors

    In the retina, photoreceptors, bipolar cells, and horizontal cells work together to process visual information before it reaches the brain. Here’s how each cell type contributes to vision:

     

    1. Photoreceptors

    • Types: There are two main types of photoreceptors: rods and cones.
      • Rods: Specialized for low-light and peripheral vision; they help us see in dim lighting and detect motion.
      • Cones: Specialized for color and detail; they function best in bright light and are concentrated in the central retina (the fovea), allowing for high-resolution vision.
    • Function: Photoreceptors convert light into electrical signals. When light hits the retina, photoreceptors undergo a chemical change, triggering an electrical response that initiates the visual process. Rods and cones detect different intensities and colors, providing the foundation for brightness and color perception.

     

    2. Bipolar Cells

    • Function: Bipolar cells act as intermediaries, connecting photoreceptors to ganglion cells, which send signals to the brain. They receive input from photoreceptors and relay it to the retinal ganglion cells.
    • On and Off Bipolar Cells: Some bipolar cells are ON cells, responding when light is detected (depolarizing in light), and others are OFF cells, responding in darkness (depolarizing in the absence of light). This division allows for more precise contrast detection and the ability to distinguish light from dark areas in the visual field.

     

    3. Horizontal Cells

    • Function: Horizontal cells connect photoreceptors to each other and create lateral interactions between them. They integrate signals from multiple photoreceptors, allowing them to adjust the sensitivity of neighboring photoreceptors in response to varying light conditions.
    • Lateral Inhibition: This process improves visual contrast and sharpness by making the borders between light and dark areas more distinct, enhancing our ability to perceive edges and fine detail.

     

    These three types of cells work together to help the retina preprocess visual information and perception, emphasizing contrast and adjusting for different lighting conditions before signals are sent to the brain for further processing and interpretation.

     

     

    ,
    Read more: Eye retina’s Bipolar Cells, Horizontal Cells, and Photoreceptors
  • What’s the Difference Between Ray Casting, Ray Tracing, Path Tracing and Rasterization? Physical light tracing…

    RASTERIZATION
    Rasterisation (or rasterization)
    is the task of taking the information described in a vector graphics format OR the vertices of triangles making 3D shapes and converting them into a raster image (a series of pixels, dots or lines, which, when displayed together, create the image which was represented via shapes), or in other words “rasterizing” vectors or 3D models onto a 2D plane for display on a computer screen.

    For each triangle of a 3D shape, you project the corners of the triangle on the virtual screen with some math (projective geometry). Then you have the position of the 3 corners of the triangle on the pixel screen. Those 3 points have texture coordinates, so you know where in the texture are the 3 corners. The cost is proportional to the number of triangles, and is only a little bit affected by the screen resolution.

    In computer graphics, a raster graphics or bitmap image is a dot matrix data structure that represents a generally rectangular grid of pixels (points of color), viewable via a monitor, paper, or other display medium.

    With rasterization, objects on the screen are created from a mesh of virtual triangles, or polygons, that create 3D models of objects. A lot of information is associated with each vertex, including its position in space, as well as information about color, texture and its “normal,” which is used to determine the way the surface of an object is facing.

    Computers then convert the triangles of the 3D models into pixels, or dots, on a 2D screen. Each pixel can be assigned an initial color value from the data stored in the triangle vertices.

    Further pixel processing or “shading,” including changing pixel color based on how lights in the scene hit the pixel, and applying one or more textures to the pixel, combine to generate the final color applied to a pixel.

     

    The main advantage of rasterization is its speed. However, rasterization is simply the process of computing the mapping from scene geometry to pixels and does not prescribe a particular way to compute the color of those pixels. So it cannot take shading, especially the physical light, into account and it cannot promise to get a photorealistic output. That’s a big limitation of rasterization.

    There are also multiple problems:


    • If you have two triangles one is behind the other, you will draw twice all the pixels. you only keep the pixel from the triangle that is closer to you (Z-buffer), but you still do the work twice.



    • The borders of your triangles are jagged as it is hard to know if a pixel is in the triangle or out. You can do some smoothing on those, that is anti-aliasing.



    • You have to handle every triangles (including the ones behind you) and then see that they do not touch the screen at all. (we have techniques to mitigate this where we only look at triangles that are in the field of view)



    • Transparency is hard to handle (you can’t just do an average of the color of overlapping transparent triangles, you have to do it in the right order)


     

     

     

    RAY CASTING
    It is almost the exact reverse of rasterization: you start from the virtual screen instead of the vector or 3D shapes, and you project a ray, starting from each pixel of the screen, until it intersect with a triangle.

    The cost is directly correlated to the number of pixels in the screen and you need a really cheap way of finding the first triangle that intersect a ray. In the end, it is more expensive than rasterization but it will, by design, ignore the triangles that are out of the field of view.

    You can use it to continue after the first triangle it hit, to take a little bit of the color of the next one, etc… This is useful to handle the border of the triangle cleanly (less jagged) and to handle transparency correctly.

     

    RAYTRACING


    Same idea as ray casting except once you hit a triangle you reflect on it and go into a different direction. The number of reflection you allow is the “depth” of your ray tracing. The color of the pixel can be calculated, based off the light source and all the polygons it had to reflect off of to get to that screen pixel.

    The easiest way to think of ray tracing is to look around you, right now. The objects you’re seeing are illuminated by beams of light. Now turn that around and follow the path of those beams backwards from your eye to the objects that light interacts with. That’s ray tracing.

    Ray tracing is eye-oriented process that needs walking through each pixel looking for what object should be shown there, which is also can be described as a technique that follows a beam of light (in pixels) from a set point and simulates how it reacts when it encounters objects.

    Compared with rasterization, ray tracing is hard to be implemented in real time, since even one ray can be traced and processed without much trouble, but after one ray bounces off an object, it can turn into 10 rays, and those 10 can turn into 100, 1000…The increase is exponential, and the the calculation for all these rays will be time consuming.

    Historically, computer hardware hasn’t been fast enough to use these techniques in real time, such as in video games. Moviemakers can take as long as they like to render a single frame, so they do it offline in render farms. Video games have only a fraction of a second. As a result, most real-time graphics rely on the another technique called rasterization.

     

     

    PATH TRACING
    Path tracing can be used to solve more complex lighting situations.

    Path tracing is a type of ray tracing. When using path tracing for rendering, the rays only produce a single ray per bounce. The rays do not follow a defined line per bounce (to a light, for example), but rather shoot off in a random direction. The path tracing algorithm then takes a random sampling of all of the rays to create the final image. This results in sampling a variety of different types of lighting.

    When a ray hits a surface it doesn’t trace a path to every light source, instead it bounces the ray off the surface and keeps bouncing it until it hits a light source or exhausts some bounce limit.
    It then calculates the amount of light transferred all the way to the pixel, including any color information gathered from surfaces along the way.
    It then averages out the values calculated from all the paths that were traced into the scene to get the final pixel color value.

    It requires a ton of computing power and if you don’t send out enough rays per pixel or don’t trace the paths far enough into the scene then you end up with a very spotty image as many pixels fail to find any light sources from their rays. So when you increase the the samples per pixel, you can see the image quality becomes better and better.

    Ray tracing tends to be more efficient than path tracing. Basically, the render time of a ray tracer depends on the number of polygons in the scene. The more polygons you have, the longer it will take.
    Meanwhile, the rendering time of a path tracer can be indifferent to the number of polygons, but it is related to light situation: If you add a light, transparency, translucence, or other shader effects, the path tracer will slow down considerably.

     
     

     

    Sources:
    https://medium.com/@junyingw/future-of-gaming-rasterization-vs-ray-tracing-vs-path-tracing-32b334510f1f

     

     

    blogs.nvidia.com/blog/2018/03/19/whats-difference-between-ray-tracing-rasterization/

     

    https://en.wikipedia.org/wiki/Rasterisation

     

     

    https://www.quora.com/Whats-the-difference-between-ray-tracing-and-path-tracing

    , ,
    Read more: What’s the Difference Between Ray Casting, Ray Tracing, Path Tracing and Rasterization? Physical light tracing…