COLOR

  • The Color of Infinite Temperature

    This is the color of something infinitely hot.

    Of course you’d instantly be fried by gamma rays of arbitrarily high frequency, but this would be its spectrum in the visible range.

    johncarlosbaez.wordpress.com/2022/01/16/the-color-of-infinite-temperature/

    This is also the color of a typical neutron star. They’re so hot they look the same.
    It’s also the color of the early Universe!

    This was worked out by David Madore.

    The color he got is sRGB(148,177,255).
    www.htmlcsscolor.com/hex/94B1FF

    And according to the experts who sip latte all day and make up names for colors, this color is called ‘Perano’.

    ,
    Read more: The Color of Infinite Temperature
  • Eye retina’s Bipolar Cells, Horizontal Cells, and Photoreceptors

    In the retina, photoreceptors, bipolar cells, and horizontal cells work together to process visual information before it reaches the brain. Here’s how each cell type contributes to vision:

     

    1. Photoreceptors

    • Types: There are two main types of photoreceptors: rods and cones.
      • Rods: Specialized for low-light and peripheral vision; they help us see in dim lighting and detect motion.
      • Cones: Specialized for color and detail; they function best in bright light and are concentrated in the central retina (the fovea), allowing for high-resolution vision.
    • Function: Photoreceptors convert light into electrical signals. When light hits the retina, photoreceptors undergo a chemical change, triggering an electrical response that initiates the visual process. Rods and cones detect different intensities and colors, providing the foundation for brightness and color perception.

     

    2. Bipolar Cells

    • Function: Bipolar cells act as intermediaries, connecting photoreceptors to ganglion cells, which send signals to the brain. They receive input from photoreceptors and relay it to the retinal ganglion cells.
    • On and Off Bipolar Cells: Some bipolar cells are ON cells, responding when light is detected (depolarizing in light), and others are OFF cells, responding in darkness (depolarizing in the absence of light). This division allows for more precise contrast detection and the ability to distinguish light from dark areas in the visual field.

     

    3. Horizontal Cells

    • Function: Horizontal cells connect photoreceptors to each other and create lateral interactions between them. They integrate signals from multiple photoreceptors, allowing them to adjust the sensitivity of neighboring photoreceptors in response to varying light conditions.
    • Lateral Inhibition: This process improves visual contrast and sharpness by making the borders between light and dark areas more distinct, enhancing our ability to perceive edges and fine detail.

     

    These three types of cells work together to help the retina preprocess visual information and perception, emphasizing contrast and adjusting for different lighting conditions before signals are sent to the brain for further processing and interpretation.

     

     

    ,
    Read more: Eye retina’s Bipolar Cells, Horizontal Cells, and Photoreceptors
  • 3D Lighting Tutorial by Amaan Kram

    http://www.amaanakram.com/lightingT/part1.htm

    The goals of lighting in 3D computer graphics are more or less the same as those of real world lighting.

     

    Lighting serves a basic function of bringing out, or pushing back the shapes of objects visible from the camera’s view.
    It gives a two-dimensional image on the monitor an illusion of the third dimension-depth.

    But it does not just stop there. It gives an image its personality, its character. A scene lit in different ways can give a feeling of happiness, of sorrow, of fear etc., and it can do so in dramatic or subtle ways. Along with personality and character, lighting fills a scene with emotion that is directly transmitted to the viewer.

     

    Trying to simulate a real environment in an artificial one can be a daunting task. But even if you make your 3D rendering look absolutely photo-realistic, it doesn’t guarantee that the image carries enough emotion to elicit a “wow” from the people viewing it.

     

    Making 3D renderings photo-realistic can be hard. Putting deep emotions in them can be even harder. However, if you plan out your lighting strategy for the mood and emotion that you want your rendering to express, you make the process easier for yourself.

     

    Each light source can be broken down in to 4 distinct components and analyzed accordingly.

    · Intensity
    · Direction
    · Color
    · Size

     

    The overall thrust of this writing is to produce photo-realistic images by applying good lighting techniques.

    , ,
    Read more: 3D Lighting Tutorial by Amaan Kram

LIGHTING

Collections
| Explore posts
| Design And Composition
| Featured AI

Popular Searches
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke




Subscribe to PixelSham.com RSS for free
Subscribe to PixelSham.com RSS for free