COLOR

LIGHTING

  • What light is best to illuminate gems for resale

    www.palagems.com/gem-lighting2

     

    Artificial light sources, not unlike the diverse phases of natural light, vary considerably in their properties. As a result, some lamps render an object’s color better than others do.

     

    The most important criterion for assessing the color-rendering ability of any lamp is its spectral power distribution curve.

     

    Natural daylight varies too much in strength and spectral composition to be taken seriously as a lighting standard for grading and dealing colored stones. For anything to be a standard, it must be constant in its properties, which natural light is not.

     

    For dealers in particular to make the transition from natural light to an artificial light source, that source must offer:
    1- A degree of illuminance at least as strong as the common phases of natural daylight.
    2- Spectral properties identical or comparable to a phase of natural daylight.

     

    A source combining these two things makes gems appear much the same as when viewed under a given phase of natural light. From the viewpoint of many dealers, this corresponds to a naturalappearance.

     

    The 6000° Kelvin xenon short-arc lamp appears closest to meeting the criteria for a standard light source. Besides the strong illuminance this lamp affords, its spectrum is very similar to CIE standard illuminants of similar color temperature.

    ,
    Read more: What light is best to illuminate gems for resale
  • Tracing Spherical harmonics and how Weta used them in production

     

    A way to approximate complex lighting in ultra realistic renders.

    All SH lighting techniques involve replacing parts of standard lighting equations with spherical functions that have been projected into frequency space using the spherical harmonics as a basis.

    http://www.cs.columbia.edu/~cs4162/slides/spherical-harmonic-lighting.pdf

     

    Spherical harmonics as used at Weta Digital

    https://www.fxguide.com/fxfeatured/the-science-of-spherical-harmonics-at-weta-digital/

    , ,
    Read more: Tracing Spherical harmonics and how Weta used them in production
  • HDRI shooting and editing by Xuan Prada and Greg Zaal

    www.xuanprada.com/blog/2014/11/3/hdri-shooting

     

    http://blog.gregzaal.com/2016/03/16/make-your-own-hdri/

     

    http://blog.hdrihaven.com/how-to-create-high-quality-hdri/

     

    Shooting checklist

    • Full coverage of the scene (fish-eye shots)
    • Backplates for look-development (including ground or floor)
    • Macbeth chart for white balance
    • Grey ball for lighting calibration
    • Chrome ball for lighting orientation
    • Basic scene measurements
    • Material samples
    • Individual HDR artificial lighting sources if required

    Methodology

    • Plant the tripod where the action happens, stabilise it and level it
    • Set manual focus
    • Set white balance
    • Set ISO
    • Set raw+jpg
    • Set apperture
    • Metering exposure
    • Set neutral exposure
    • Read histogram and adjust neutral exposure if necessary
    • Shot slate (operator name, location, date, time, project code name, etc)
    • Set auto bracketing
    • Shot 5 to 7 exposures with 3 stops difference covering the whole environment
    • Place the aromatic kit where the tripod was placed, and take 3 exposures. Keep half of the grey sphere hit by the sun and half in shade.
    • Place the Macbeth chart 1m away from tripod on the floor and take 3 exposures
    • Take backplates and ground/floor texture references
    • Shoot reference materials
    • Write down measurements of the scene, specially if you are shooting interiors.
    • If shooting artificial lights take HDR samples of each individual lighting source.

    Exposures starting point

    • Day light sun visible ISO 100 F22
    • Day light sun hidden ISO 100 F16
    • Cloudy ISO 320 F16
    • Sunrise/Sunset ISO 100 F11
    • Interior well lit ISO 320 F16
    • Interior ambient bright ISO 320 F10
    • Interior bad light ISO 640 F10
    • Interior ambient dark ISO 640 F8
    • Low light situation ISO 640 F5

     

    NOTE: The goal is to clean the initial individual brackets before or at merging time as much as possible.
    This means:

    • keeping original shooting metadata
    • de-fringing
    • removing aberration (through camera lens data or automatically)
    • at 32 bit
    • in ACEScg (or ACES) wherever possible

     

    Here are the tips for using the chromatic ball in VFX projects, written in English:
    https://www.linkedin.com/posts/bellrodrigo_here-are-the-tips-for-using-the-chromatic-activity-7200950595438940160-AGBp

     

    Tips for Using the Chromatic Ball in VFX Projects**

    The chromatic ball is an invaluable tool in VFX work, helping to capture lighting and reflection data crucial for integrating CGI elements seamlessly. Here are some tips to maximize its effectiveness:

     

    1. **Positioning**:
    – Place the chromatic ball in the same lighting conditions as the main subject. Ensure it is visible in the camera frame but not obstructing the main action.
    – Ideally, place the ball where the CGI elements will be integrated to match the lighting and reflections accurately.

     

    2. **Recording Reference Footage**:
    – Capture reference footage of the chromatic ball at the beginning and end of each scene or lighting setup. This ensures you have consistent lighting data for the entire shoot.

     

    3. **Consistent Angles**:
    – Use consistent camera angles and heights when recording the chromatic ball. This helps in comparing and matching lighting setups across different shots.

     

    4. **Combine with a Gray Ball**:
    – Use a gray ball alongside the chromatic ball. The gray ball provides a neutral reference for exposure and color balance, complementing the chromatic ball’s reflection data.

     

    5. **Marking Positions**:
    – Mark the position of the chromatic ball on the set to ensure consistency when shooting multiple takes or different camera angles.

     

    6. **Lighting Analysis**:
    – Analyze the chromatic ball footage to understand the light sources, intensity, direction, and color temperature. This information is crucial for creating realistic CGI lighting and shadows.

     

    7. **Reflection Analysis**:
    – Use the chromatic ball to capture the environment’s reflections. This helps in accurately reflecting the CGI elements within the same scene, making them blend seamlessly.

     

    8. **Use HDRI**:
    – Capture High Dynamic Range Imagery (HDRI) of the chromatic ball. HDRI provides detailed lighting information and can be used to light CGI scenes with greater realism.

     

    9. **Communication with VFX Team**:
    – Ensure that the VFX team is aware of the chromatic ball’s data and how it was captured. Clear communication ensures that the data is used effectively in post-production.

     

    10. **Post-Production Adjustments**:
    – In post-production, use the chromatic ball data to adjust the CGI elements’ lighting and reflections. This ensures that the final output is visually cohesive and realistic.

    , ,
    Read more: HDRI shooting and editing by Xuan Prada and Greg Zaal

Collections
| Explore posts
| Design And Composition
| Featured AI

Popular Searches
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke




Subscribe to PixelSham.com RSS for free
Subscribe to PixelSham.com RSS for free