COLOR

LIGHTING

  • Photography basics: Why Use a (MacBeth) Color Chart?

    Start here: https://www.pixelsham.com/2013/05/09/gretagmacbeth-color-checker-numeric-values/

     

    https://www.studiobinder.com/blog/what-is-a-color-checker-tool/

     

     

     

     

    In LightRoom

     

    in Final Cut

     

    in Nuke

    Note: In Foundry’s Nuke, the software will map 18% gray to whatever your center f/stop is set to in the viewer settings (f/8 by default… change that to EV by following the instructions below).
    You can experiment with this by attaching an Exposure node to a Constant set to 0.18, setting your viewer read-out to Spotmeter, and adjusting the stops in the node up and down. You will see that a full stop up or down will give you the respective next value on the aperture scale (f8, f11, f16 etc.).

    One stop doubles or halves the amount or light that hits the filmback/ccd, so everything works in powers of 2.
    So starting with 0.18 in your constant, you will see that raising it by a stop will give you .36 as a floating point number (in linear space), while your f/stop will be f/11 and so on.

     

    If you set your center stop to 0 (see below) you will get a relative readout in EVs, where EV 0 again equals 18% constant gray.

     

    In other words. Setting the center f-stop to 0 means that in a neutral plate, the middle gray in the macbeth chart will equal to exposure value 0. EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

     

    This will set the sun usually around EV12-17 and the sky EV1-4 , depending on cloud coverage.

     

    To switch Foundry’s Nuke’s SpotMeter to return the EV of an image, click on the main viewport, and then press s, this opens the viewer’s properties. Now set the center f-stop to 0 in there. And the SpotMeter in the viewport will change from aperture and fstops to EV.

    , ,
    Read more: Photography basics: Why Use a (MacBeth) Color Chart?
  • 3D Lighting Tutorial by Amaan Kram

    http://www.amaanakram.com/lightingT/part1.htm

    The goals of lighting in 3D computer graphics are more or less the same as those of real world lighting.

     

    Lighting serves a basic function of bringing out, or pushing back the shapes of objects visible from the camera’s view.
    It gives a two-dimensional image on the monitor an illusion of the third dimension-depth.

    But it does not just stop there. It gives an image its personality, its character. A scene lit in different ways can give a feeling of happiness, of sorrow, of fear etc., and it can do so in dramatic or subtle ways. Along with personality and character, lighting fills a scene with emotion that is directly transmitted to the viewer.

     

    Trying to simulate a real environment in an artificial one can be a daunting task. But even if you make your 3D rendering look absolutely photo-realistic, it doesn’t guarantee that the image carries enough emotion to elicit a “wow” from the people viewing it.

     

    Making 3D renderings photo-realistic can be hard. Putting deep emotions in them can be even harder. However, if you plan out your lighting strategy for the mood and emotion that you want your rendering to express, you make the process easier for yourself.

     

    Each light source can be broken down in to 4 distinct components and analyzed accordingly.

    · Intensity
    · Direction
    · Color
    · Size

     

    The overall thrust of this writing is to produce photo-realistic images by applying good lighting techniques.

    , ,
    Read more: 3D Lighting Tutorial by Amaan Kram
  • LUX vs LUMEN vs NITS vs CANDELA – What is the difference

    More details here: Lumens vs Candelas (candle) vs Lux vs FootCandle vs Watts vs Irradiance vs Illuminance

     

     

     

     

    https://www.inhouseav.com.au/blog/beginners-guide-nits-lumens-brightness/

     

     

    Candela

     

    Candela is the basic unit of measure of the entire volume of light intensity from any point in a single direction from a light source. Note the detail: it measures the total volume of light within a certain beam angle and direction.
    While the luminance of starlight is around 0.001 cd/m2, that of a sunlit scene is around 100,000 cd/m2, which is a hundred millions times higher. The luminance of the sun itself is approximately 1,000,000,000 cd/m2.

     

    NIT

     

    https://en.wikipedia.org/wiki/Candela_per_square_metre

     

    The candela per square metre (symbol: cd/m2) is the unit of luminance in the International System of Units (SI). The unit is based on the candela, the SI unit of luminous intensity, and the square metre, the SI unit of area. The nit (symbol: nt) is a non-SI name also used for this unit (1 nt = 1 cd/m2).[1] The term nit is believed to come from the Latin word nitēre, “to shine”. As a measure of light emitted per unit area, this unit is frequently used to specify the brightness of a display device.

    NIT and cd/m2 (candela power) represent the same thing and can be used interchangeably. One nit is equivalent to one candela per square meter, where the candela is the amount of light which has been emitted by a common tallow candle, but NIT is not part of the International System of Units (abbreviated SI, from Systeme International, in French).

    It’s easiest to think of a TV as emitting light directly, in much the same way as the Sun does. Nits are simply the measurement of the level of light (luminance) in a given area which the emitting source sends to your eyes or a camera sensor.

    The Nit can be considered a unit of visible-light intensity which is often used to specify the brightness level of an LCD.

    1 Nit is approximately equal to 3.426 Lumens. To work out a comparable number of Nits to Lumens, you need to multiply the number of Nits by 3.426. If you know the number of Lumens, and wish to know the Nits, simply divide the number of Lumens by 3.426.

    Most consumer desktop LCDs have Nits of 200 to 300, the average TV most likely has an output capability of between 100 and 200 Nits, and an HDR TV ranges from 400 to 1,500 Nits.
    Virtual Production sets currently sport around 6000 NIT ceiling and 1000 NIT wall panels.

     

    The ambient brightness of a sunny day with clear blue skies is between 7000-10,000 nits (between 3000-7000 nits for overcast skies and indirect sunlight).
    A bright sunny day can have specular highlights that reach over 100,000 nits. Direct sunlight is around 1,600,000,000 nits.
    10,000 nits is also the typical brightness of a fluorescent tube – bright, but not painful to look at.

     

     

    https://www.displaydaily.com/article/display-daily/dolby-vision-vs-hdr10-clarified

    Tests showed that a “black level” of 0.005 nits (cd/m²) satisfied the vast majority of viewers. While 0.005 nits is very close to true black, Griffis says Dolby can go down to a black of 0.0001 nits, even though there is no need or ability for displays to get that dark today.
    How bright is white? Dolby says the range of 0.005 nits – 10,000 nits satisfied 84% of the viewers in their viewing tests.
    The brightest consumer HDR displays today are about 1,500 nits. Professional displays where HDR content is color-graded can achieve up to 4,000 nits peak brightness.

    High brightness that would be in danger of damaging the eye would be in the neighborhood of 250,000 nits.

     

    Lumens

     

    Lumen is a measure of how much light is emitted (luminance, luminous flux) by an object. It indicates the total potential amount of light from a light source that is visible to the human eye.
    Lumen is commonly used in the context of light bulbs or video-projectors as a metric for their brightness power.

    Lumen is used to describe light output, and about video projectors, it is commonly referred to as ANSI Lumens. Simply put, lumens is how to find out how bright a LED display is. The higher the lumens, the brighter to display!

    Technically speaking, a Lumen is the SI unit of luminous flux, which is equal to the amount of light which is emitted per second in a unit solid angle of one steradian from a uniform source of one-candela intensity radiating in all directions.

     

    LUX

     

    Lux (lx) or often Illuminance, is a photometric unit along a given area, which takes in account the sensitivity of human eye to different wavelenghts. It is the measure of light at a specific distance within a specific area at that distance. Often used to measure the incidental sun’s intensity.

     

    , ,
    Read more: LUX vs LUMEN vs NITS vs CANDELA – What is the difference