COLOR

  • Eye retina’s Bipolar Cells, Horizontal Cells, and Photoreceptors

    In the retina, photoreceptors, bipolar cells, and horizontal cells work together to process visual information before it reaches the brain. Here’s how each cell type contributes to vision:

     

    1. Photoreceptors

    • Types: There are two main types of photoreceptors: rods and cones.
      • Rods: Specialized for low-light and peripheral vision; they help us see in dim lighting and detect motion.
      • Cones: Specialized for color and detail; they function best in bright light and are concentrated in the central retina (the fovea), allowing for high-resolution vision.
    • Function: Photoreceptors convert light into electrical signals. When light hits the retina, photoreceptors undergo a chemical change, triggering an electrical response that initiates the visual process. Rods and cones detect different intensities and colors, providing the foundation for brightness and color perception.

     

    2. Bipolar Cells

    • Function: Bipolar cells act as intermediaries, connecting photoreceptors to ganglion cells, which send signals to the brain. They receive input from photoreceptors and relay it to the retinal ganglion cells.
    • On and Off Bipolar Cells: Some bipolar cells are ON cells, responding when light is detected (depolarizing in light), and others are OFF cells, responding in darkness (depolarizing in the absence of light). This division allows for more precise contrast detection and the ability to distinguish light from dark areas in the visual field.

     

    3. Horizontal Cells

    • Function: Horizontal cells connect photoreceptors to each other and create lateral interactions between them. They integrate signals from multiple photoreceptors, allowing them to adjust the sensitivity of neighboring photoreceptors in response to varying light conditions.
    • Lateral Inhibition: This process improves visual contrast and sharpness by making the borders between light and dark areas more distinct, enhancing our ability to perceive edges and fine detail.

     

    These three types of cells work together to help the retina preprocess visual information and perception, emphasizing contrast and adjusting for different lighting conditions before signals are sent to the brain for further processing and interpretation.

     

     

    ,
    Read more: Eye retina’s Bipolar Cells, Horizontal Cells, and Photoreceptors
  • What is OLED and what can it do for your TV

    https://www.cnet.com/news/what-is-oled-and-what-can-it-do-for-your-tv/

    OLED stands for Organic Light Emitting Diode. Each pixel in an OLED display is made of a material that glows when you jab it with electricity. Kind of like the heating elements in a toaster, but with less heat and better resolution. This effect is called electroluminescence, which is one of those delightful words that is big, but actually makes sense: “electro” for electricity, “lumin” for light and “escence” for, well, basically “essence.”

    OLED TV marketing often claims “infinite” contrast ratios, and while that might sound like typical hyperbole, it’s one of the extremely rare instances where such claims are actually true. Since OLED can produce a perfect black, emitting no light whatsoever, its contrast ratio (expressed as the brightest white divided by the darkest black) is technically infinite.

    OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks.

    ,
    Read more: What is OLED and what can it do for your TV
  • OLED vs QLED – What TV is better?

     

    Supported by LG, Philips, Panasonic and Sony sell the OLED system TVs.
    OLED stands for “organic light emitting diode.”
    It is a fundamentally different technology from LCD, the major type of TV today.
    OLED is “emissive,” meaning the pixels emit their own light.

     

    Samsung is branding its best TVs with a new acronym: “QLED”
    QLED (according to Samsung) stands for “quantum dot LED TV.”
    It is a variation of the common LED LCD, adding a quantum dot film to the LCD “sandwich.”
    QLED, like LCD, is, in its current form, “transmissive” and relies on an LED backlight.

     

    OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks.

    QLED, as an improvement over OLED, significantly improves the picture quality. QLED can produce an even wider range of colors than OLED, which says something about this new tech. QLED is also known to produce up to 40% higher luminance efficiency than OLED technology. Further, many tests conclude that QLED is far more efficient in terms of power consumption than its predecessor, OLED.

     

    When analyzing TVs color, it may be beneficial to consider at least 3 elements:
    “Color Depth”, “Color Gamut”, and “Dynamic Range”.

     

    Color Depth (or “Bit-Depth”, e.g. 8-bit, 10-bit, 12-bit) determines how many distinct color variations (tones/shades) can be viewed on a given display.

     

    Color Gamut (e.g. WCG) determines which specific colors can be displayed from a given “Color Space” (Rec.709, Rec.2020, DCI-P3) (i.e. the color range).

     

    Dynamic Range (SDR, HDR) determines the luminosity range of a specific color – from its darkest shade (or tone) to its brightest.

     

    The overall brightness range of a color will be determined by a display’s “contrast ratio”, that is, the ratio of luminance between the darkest black that can be produced and the brightest white.

     

    Color Volume is the “Color Gamut” + the “Dynamic/Luminosity Range”.
    A TV’s Color Volume will not only determine which specific colors can be displayed (the color range) but also that color’s luminosity range, which will have an affect on its “brightness”, and “colorfulness” (intensity and saturation).

     

    The better the colour volume in a TV, the closer to life the colours appear.

     

    QLED TV can express nearly all of the colours in the DCI-P3 colour space, and of those colours, express 100% of the colour volume, thereby producing an incredible range of colours.

     

    With OLED TV, when the image is too bright, the percentage of the colours in the colour volume produced by the TV drops significantly. The colours get washed out and can only express around 70% colour volume, making the picture quality drop too.

     

    Note. OLED TV uses organic material, so it may lose colour expression as it ages.

     

    Resources for more reading and comparison below

    www.avsforum.com/forum/166-lcd-flat-panel-displays/2812161-what-color-volume.html

     

    www.newtechnologytv.com/qled-vs-oled/

     

    news.samsung.com/za/qled-tv-vs-oled-tv

     

    www.cnet.com/news/qled-vs-oled-samsungs-tv-tech-and-lgs-tv-tech-are-not-the-same/

     

    ,
    Read more: OLED vs QLED – What TV is better?

LIGHTING

Collections
| Explore posts
| Design And Composition
| Featured AI

Popular Searches
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke




Subscribe to PixelSham.com RSS for free
Subscribe to PixelSham.com RSS for free