COLOR

  • Tim Kang – calibrated white light values in sRGB color space

    https://www.linkedin.com/posts/timkang_colorimetry-cinematography-nerdalert-activity-7058330978007584769-9xln

     

    8bit sRGB encoded
    2000K 255 139 22
    2700K 255 172 89
    3000K 255 184 109
    3200K 255 190 122
    4000K 255 211 165
    4300K 255 219 178
    D50 255 235 205
    D55 255 243 224
    D5600 255 244 227
    D6000 255 249 240
    D65 255 255 255
    D10000 202 221 255
    D20000 166 196 255

    8bit Rec709 Gamma 2.4
    2000K 255 145 34
    2700K 255 177 97
    3000K 255 187 117
    3200K 255 193 129
    4000K 255 214 170
    4300K 255 221 182
    D50 255 236 208
    D55 255 243 226
    D5600 255 245 229
    D6000 255 250 241
    D65 255 255 255
    D10000 204 222 255
    D20000 170 199 255

    8bit Display P3 encoded
    2000K 255 154 63
    2700K 255 185 109
    3000K 255 195 127
    3200K 255 201 138
    4000K 255 219 176
    4300K 255 225 187
    D50 255 239 212
    D55 255 245 228
    D5600 255 246 231
    D6000 255 251 242
    D65 255 255 255
    D10000 208 223 255
    D20000 175 199 255

    10bit Rec2020 PQ (100 nits)
    2000K 520 435 273
    2700K 520 466 358
    3000K 520 475 384
    3200K 520 480 399
    4000K 520 495 446
    4300K 520 500 458
    D50 520 510 482
    D55 520 514 497
    D5600 520 514 500
    D6000 520 517 509
    D65 520 520 520
    D10000 479 489 520
    D20000 448 464 520

     

    ,
    Read more: Tim Kang – calibrated white light values in sRGB color space
  • HDR and Color

    https://www.soundandvision.com/content/nits-and-bits-hdr-and-color

    In HD we often refer to the range of available colors as a color gamut. Such a color gamut is typically plotted on a two-dimensional diagram, called a CIE chart, as shown in at the top of this blog. Each color is characterized by its x/y coordinates.

    Good enough for government work, perhaps. But for HDR, with its higher luminance levels and wider color, the gamut becomes three-dimensional.

    For HDR the color gamut therefore becomes a characteristic we now call the color volume. It isn’t easy to show color volume on a two-dimensional medium like the printed page or a computer screen, but one method is shown below. As the luminance becomes higher, the picture eventually turns to white. As it becomes darker, it fades to black. The traditional color gamut shown on the CIE chart is simply a slice through this color volume at a selected luminance level, such as 50%.

    Three different color volumes—we still refer to them as color gamuts though their third dimension is important—are currently the most significant. The first is BT.709 (sometimes referred to as Rec.709), the color gamut used for pre-UHD/HDR formats, including standard HD.

    The largest is known as BT.2020; it encompasses (roughly) the range of colors visible to the human eye (though ET might find it insufficient!).

    Between these two is the color gamut used in digital cinema, known as DCI-P3.

    sRGB

    D65

     

    , ,
    Read more: HDR and Color
  • Eye retina’s Bipolar Cells, Horizontal Cells, and Photoreceptors

    In the retina, photoreceptors, bipolar cells, and horizontal cells work together to process visual information before it reaches the brain. Here’s how each cell type contributes to vision:

     

    1. Photoreceptors

    • Types: There are two main types of photoreceptors: rods and cones.
      • Rods: Specialized for low-light and peripheral vision; they help us see in dim lighting and detect motion.
      • Cones: Specialized for color and detail; they function best in bright light and are concentrated in the central retina (the fovea), allowing for high-resolution vision.
    • Function: Photoreceptors convert light into electrical signals. When light hits the retina, photoreceptors undergo a chemical change, triggering an electrical response that initiates the visual process. Rods and cones detect different intensities and colors, providing the foundation for brightness and color perception.

     

    2. Bipolar Cells

    • Function: Bipolar cells act as intermediaries, connecting photoreceptors to ganglion cells, which send signals to the brain. They receive input from photoreceptors and relay it to the retinal ganglion cells.
    • On and Off Bipolar Cells: Some bipolar cells are ON cells, responding when light is detected (depolarizing in light), and others are OFF cells, responding in darkness (depolarizing in the absence of light). This division allows for more precise contrast detection and the ability to distinguish light from dark areas in the visual field.

     

    3. Horizontal Cells

    • Function: Horizontal cells connect photoreceptors to each other and create lateral interactions between them. They integrate signals from multiple photoreceptors, allowing them to adjust the sensitivity of neighboring photoreceptors in response to varying light conditions.
    • Lateral Inhibition: This process improves visual contrast and sharpness by making the borders between light and dark areas more distinct, enhancing our ability to perceive edges and fine detail.

     

    These three types of cells work together to help the retina preprocess visual information and perception, emphasizing contrast and adjusting for different lighting conditions before signals are sent to the brain for further processing and interpretation.

     

     

    ,
    Read more: Eye retina’s Bipolar Cells, Horizontal Cells, and Photoreceptors
  • Space bodies’ components and light spectroscopy

    www.plutorules.com/page-111-space-rocks.html

    This help’s us understand the composition of components in/on solar system bodies.

    Dips in the observed light spectrum, also known as, lines of absorption occur as gasses absorb energy from light at specific points along the light spectrum.

    These dips or darkened zones (lines of absorption) leave a finger print which identify elements and compounds.

    In this image the dark absorption bands appear as lines of emission which occur as the result of emitted not reflected (absorbed) light.

     

     

     

    Lines of absorption

     
    Lines of emission
     
     
    Read more: Space bodies’ components and light spectroscopy

LIGHTING