COLOR

  • Photography Basics : Spectral Sensitivity Estimation Without a Camera

    https://color-lab-eilat.github.io/Spectral-sensitivity-estimation-web/

     

    A number of problems in computer vision and related fields would be mitigated if camera spectral sensitivities were known. As consumer cameras are not designed for high-precision visual tasks, manufacturers do not disclose spectral sensitivities. Their estimation requires a costly optical setup, which triggered researchers to come up with numerous indirect methods that aim to lower cost and complexity by using color targets. However, the use of color targets gives rise to new complications that make the estimation more difficult, and consequently, there currently exists no simple, low-cost, robust go-to method for spectral sensitivity estimation that non-specialized research labs can adopt. Furthermore, even if not limited by hardware or cost, researchers frequently work with imagery from multiple cameras that they do not have in their possession.

     

    To provide a practical solution to this problem, we propose a framework for spectral sensitivity estimation that not only does not require any hardware (including a color target), but also does not require physical access to the camera itself. Similar to other work, we formulate an optimization problem that minimizes a two-term objective function: a camera-specific term from a system of equations, and a universal term that bounds the solution space.

     

    Different than other work, we utilize publicly available high-quality calibration data to construct both terms. We use the colorimetric mapping matrices provided by the Adobe DNG Converter to formulate the camera-specific system of equations, and constrain the solutions using an autoencoder trained on a database of ground-truth curves. On average, we achieve reconstruction errors as low as those that can arise due to manufacturing imperfections between two copies of the same camera. We provide predicted sensitivities for more than 1,000 cameras that the Adobe DNG Converter currently supports, and discuss which tasks can become trivial when camera responses are available.

     

     

     

    , ,
    Read more: Photography Basics : Spectral Sensitivity Estimation Without a Camera
  • The 7 key elements of brand identity design + 10 corporate identity examples

    www.lucidpress.com/blog/the-7-key-elements-of-brand-identity-design

    1. Clear brand purpose and positioning

    2. Thorough market research

    3. Likable brand personality

    4. Memorable logo

    5. Attractive color palette

    6. Professional typography

    7. On-brand supporting graphics

     

    ,
    Read more: The 7 key elements of brand identity design + 10 corporate identity examples
  • PBR Color Reference List for Materials – by Grzegorz Baran

    The list should be helpful for every material artist who work on PBR materials as it contains over 200 color values measured with PCE-RGB2 1002 Color Spectrometer device and presented in linear and sRGB (2.2) gamma space.

    All color values, HUE and Saturation in this list come from measurements taken with PCE-RGB2 1002 Color Spectrometer device and are presented in linear and sRGB (2.2) gamma space (more info at the end of this video) I calculated Relative Luminance and Luminance values based on captured color using my own equation which takes color based luminance perception into consideration. Bare in mind that there is no ‘one’ color per substance as nothing in nature is even 100% uniform and any value in +/-10% range from these should be considered as correct one. Therefore this list should be always considered as a color reference for material’s albedos, not ulitimate and absolute truth.

     

    ,
    Read more: PBR Color Reference List for Materials – by Grzegorz Baran
  • Björn Ottosson – How software gets color wrong

    https://bottosson.github.io/posts/colorwrong/

     

    Most software around us today are decent at accurately displaying colors. Processing of colors is another story unfortunately, and is often done badly.

     

    To understand what the problem is, let’s start with an example of three ways of blending green and magenta:

    • Perceptual blend – A smooth transition using a model designed to mimic human perception of color. The blending is done so that the perceived brightness and color varies smoothly and evenly.
    • Linear blend – A model for blending color based on how light behaves physically. This type of blending can occur in many ways naturally, for example when colors are blended together by focus blur in a camera or when viewing a pattern of two colors at a distance.
    • sRGB blend – This is how colors would normally be blended in computer software, using sRGB to represent the colors. 

     

    Let’s look at some more examples of blending of colors, to see how these problems surface more practically. The examples use strong colors since then the differences are more pronounced. This is using the same three ways of blending colors as the first example.

     

    Instead of making it as easy as possible to work with color, most software make it unnecessarily hard, by doing image processing with representations not designed for it. Approximating the physical behavior of light with linear RGB models is one easy thing to do, but more work is needed to create image representations tailored for image processing and human perception.

     

    Also see:

    https://www.pixelsham.com/2022/04/05/bjorn-ottosson-okhsv-and-okhsl-two-new-color-spaces-for-color-picking/

    Read more: Björn Ottosson – How software gets color wrong
  • Christopher Butler – Understanding the Eye-Mind Connection – Vision is a mental process

    https://www.chrbutler.com/understanding-the-eye-mind-connection

     

    The intricate relationship between the eyes and the brain, often termed the eye-mind connection, reveals that vision is predominantly a cognitive process. This understanding has profound implications for fields such as design, where capturing and maintaining attention is paramount. This essay delves into the nuances of visual perception, the brain’s role in interpreting visual data, and how this knowledge can be applied to effective design strategies.

     

    This cognitive aspect of vision is evident in phenomena such as optical illusions, where the brain interprets visual information in a way that contradicts physical reality. These illusions underscore that what we “see” is not merely a direct recording of the external world but a constructed experience shaped by cognitive processes.

     

    Understanding the cognitive nature of vision is crucial for effective design. Designers must consider how the brain processes visual information to create compelling and engaging visuals. This involves several key principles:

    1. Attention and Engagement
    2. Visual Hierarchy
    3. Cognitive Load Management
    4. Context and Meaning

     

     

    , , , ,
    Read more: Christopher Butler – Understanding the Eye-Mind Connection – Vision is a mental process

LIGHTING

Collections
| Explore posts
| Design And Composition
| Featured AI

Popular Searches
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke




Subscribe to PixelSham.com RSS for free
Subscribe to PixelSham.com RSS for free