COLOR

  • OLED vs QLED – What TV is better?

     

    Supported by LG, Philips, Panasonic and Sony sell the OLED system TVs.
    OLED stands for “organic light emitting diode.”
    It is a fundamentally different technology from LCD, the major type of TV today.
    OLED is “emissive,” meaning the pixels emit their own light.

     

    Samsung is branding its best TVs with a new acronym: “QLED”
    QLED (according to Samsung) stands for “quantum dot LED TV.”
    It is a variation of the common LED LCD, adding a quantum dot film to the LCD “sandwich.”
    QLED, like LCD, is, in its current form, “transmissive” and relies on an LED backlight.

     

    OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks.

    QLED, as an improvement over OLED, significantly improves the picture quality. QLED can produce an even wider range of colors than OLED, which says something about this new tech. QLED is also known to produce up to 40% higher luminance efficiency than OLED technology. Further, many tests conclude that QLED is far more efficient in terms of power consumption than its predecessor, OLED.

     

    When analyzing TVs color, it may be beneficial to consider at least 3 elements:
    “Color Depth”, “Color Gamut”, and “Dynamic Range”.

     

    Color Depth (or “Bit-Depth”, e.g. 8-bit, 10-bit, 12-bit) determines how many distinct color variations (tones/shades) can be viewed on a given display.

     

    Color Gamut (e.g. WCG) determines which specific colors can be displayed from a given “Color Space” (Rec.709, Rec.2020, DCI-P3) (i.e. the color range).

     

    Dynamic Range (SDR, HDR) determines the luminosity range of a specific color – from its darkest shade (or tone) to its brightest.

     

    The overall brightness range of a color will be determined by a display’s “contrast ratio”, that is, the ratio of luminance between the darkest black that can be produced and the brightest white.

     

    Color Volume is the “Color Gamut” + the “Dynamic/Luminosity Range”.
    A TV’s Color Volume will not only determine which specific colors can be displayed (the color range) but also that color’s luminosity range, which will have an affect on its “brightness”, and “colorfulness” (intensity and saturation).

     

    The better the colour volume in a TV, the closer to life the colours appear.

     

    QLED TV can express nearly all of the colours in the DCI-P3 colour space, and of those colours, express 100% of the colour volume, thereby producing an incredible range of colours.

     

    With OLED TV, when the image is too bright, the percentage of the colours in the colour volume produced by the TV drops significantly. The colours get washed out and can only express around 70% colour volume, making the picture quality drop too.

     

    Note. OLED TV uses organic material, so it may lose colour expression as it ages.

     

    Resources for more reading and comparison below

    www.avsforum.com/forum/166-lcd-flat-panel-displays/2812161-what-color-volume.html

     

    www.newtechnologytv.com/qled-vs-oled/

     

    news.samsung.com/za/qled-tv-vs-oled-tv

     

    www.cnet.com/news/qled-vs-oled-samsungs-tv-tech-and-lgs-tv-tech-are-not-the-same/

     

    ,
    Read more: OLED vs QLED – What TV is better?
  • Björn Ottosson – OKHSV and OKHSL – Two new color spaces for color picking

    https://bottosson.github.io/misc/colorpicker

     

    https://bottosson.github.io/posts/colorpicker/

     

    https://www.smashingmagazine.com/2024/10/interview-bjorn-ottosson-creator-oklab-color-space/

     

    One problem with sRGB is that in a gradient between blue and white, it becomes a bit purple in the middle of the transition. That’s because sRGB really isn’t created to mimic how the eye sees colors; rather, it is based on how CRT monitors work. That means it works with certain frequencies of red, green, and blue, and also the non-linear coding called gamma. It’s a miracle it works as well as it does, but it’s not connected to color perception. When using those tools, you sometimes get surprising results, like purple in the gradient.

     

     

    There were also attempts to create simple models matching human perception based on XYZ, but as it turned out, it’s not possible to model all color vision that way. Perception of color is incredibly complex and depends, among other things, on whether it is dark or light in the room and the background color it is against. When you look at a photograph, it also depends on what you think the color of the light source is. The dress is a typical example of color vision being very context-dependent. It is almost impossible to model this perfectly.

     

    I based Oklab on two other color spaces, CIECAM16 and IPT. I used the lightness and saturation prediction from CIECAM16, which is a color appearance model, as a target. I actually wanted to use the datasets used to create CIECAM16, but I couldn’t find them.

     

    IPT was designed to have better hue uniformity. In experiments, they asked people to match light and dark colors, saturated and unsaturated colors, which resulted in a dataset for which colors, subjectively, have the same hue. IPT has a few other issues but is the basis for hue in Oklab.

     

    In the Munsell color system, colors are described with three parameters, designed to match the perceived appearance of colors: Hue, Chroma and Value. The parameters are designed to be independent and each have a uniform scale. This results in a color solid with an irregular shape. The parameters are designed to be independent and each have a uniform scale. This results in a color solid with an irregular shape. Modern color spaces and models, such as CIELAB, Cam16 and Björn Ottosson own Oklab, are very similar in their construction.

     

     

    By far the most used color spaces today for color picking are HSL and HSV, two representations introduced in the classic 1978 paper “Color Spaces for Computer Graphics”. HSL and HSV designed to roughly correlate with perceptual color properties while being very simple and cheap to compute.

     

    Today HSL and HSV are most commonly used together with the sRGB color space.

     

     

    One of the main advantages of HSL and HSV over the different Lab color spaces is that they map the sRGB gamut to a cylinder. This makes them easy to use since all parameters can be changed independently, without the risk of creating colors outside of the target gamut.

     

     

    The main drawback on the other hand is that their properties don’t match human perception particularly well.
    Reconciling these conflicting goals perfectly isn’t possible, but given that HSV and HSL don’t use anything derived from experiments relating to human perception, creating something that makes a better tradeoff does not seem unreasonable.

     

     

    With this new lightness estimate, we are ready to look into the construction of Okhsv and Okhsl.

     

     

    , ,
    Read more: Björn Ottosson – OKHSV and OKHSL – Two new color spaces for color picking
  • Photography basics: Why Use a (MacBeth) Color Chart?

    Start here: https://www.pixelsham.com/2013/05/09/gretagmacbeth-color-checker-numeric-values/

     

    https://www.studiobinder.com/blog/what-is-a-color-checker-tool/

     

     

     

     

    In LightRoom

     

    in Final Cut

     

    in Nuke

    Note: In Foundry’s Nuke, the software will map 18% gray to whatever your center f/stop is set to in the viewer settings (f/8 by default… change that to EV by following the instructions below).
    You can experiment with this by attaching an Exposure node to a Constant set to 0.18, setting your viewer read-out to Spotmeter, and adjusting the stops in the node up and down. You will see that a full stop up or down will give you the respective next value on the aperture scale (f8, f11, f16 etc.).

    One stop doubles or halves the amount or light that hits the filmback/ccd, so everything works in powers of 2.
    So starting with 0.18 in your constant, you will see that raising it by a stop will give you .36 as a floating point number (in linear space), while your f/stop will be f/11 and so on.

     

    If you set your center stop to 0 (see below) you will get a relative readout in EVs, where EV 0 again equals 18% constant gray.

     

    In other words. Setting the center f-stop to 0 means that in a neutral plate, the middle gray in the macbeth chart will equal to exposure value 0. EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

     

    This will set the sun usually around EV12-17 and the sky EV1-4 , depending on cloud coverage.

     

    To switch Foundry’s Nuke’s SpotMeter to return the EV of an image, click on the main viewport, and then press s, this opens the viewer’s properties. Now set the center f-stop to 0 in there. And the SpotMeter in the viewport will change from aperture and fstops to EV.

    , ,
    Read more: Photography basics: Why Use a (MacBeth) Color Chart?

LIGHTING

Collections
| Explore posts
| Design And Composition
| Featured AI

Popular Searches
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke





Subscribe to PixelSham.com RSS for free
Subscribe to PixelSham.com RSS for free