COLOR

  • Capturing textures albedo

    Building a Portable PBR Texture Scanner by Stephane Lb
    http://rtgfx.com/pbr-texture-scanner/

     

     

    How To Split Specular And Diffuse In Real Images, by John Hable
    http://filmicworlds.com/blog/how-to-split-specular-and-diffuse-in-real-images/

     

    Capturing albedo using a Spectralon
    https://www.activision.com/cdn/research/Real_World_Measurements_for_Call_of_Duty_Advanced_Warfare.pdf

    Real_World_Measurements_for_Call_of_Duty_Advanced_Warfare.pdf

    Spectralon is a teflon-based pressed powderthat comes closest to being a pure Lambertian diffuse material that reflects 100% of all light. If we take an HDR photograph of the Spectralon alongside the material to be measured, we can derive thediffuse albedo of that material.

     

    The process to capture diffuse reflectance is very similar to the one outlined by Hable.

     

    1. We put a linear polarizing filter in front of the camera lens and a second linear polarizing filterin front of a modeling light or a flash such that the two filters are oriented perpendicular to eachother, i.e. cross polarized.

     

    2. We place Spectralon close to and parallel with the material we are capturing and take brack-eted shots of the setup7. Typically, we’ll take nine photographs, from -4EV to +4EV in 1EVincrements.

     

    3. We convert the bracketed shots to a linear HDR image. We found that many HDR packagesdo not produce an HDR image in which the pixel values are linear. PTGui is an example of apackage which does generate a linear HDR image. At this point, because of the cross polarization,the image is one of surface diffuse response.

     

    4. We open the file in Photoshop and normalize the image by color picking the Spectralon, filling anew layer with that color and setting that layer to “Divide”. This sets the Spectralon to 1 in theimage. All other color values are relative to this so we can consider them as diffuse albedo.

    , , ,
    Read more: Capturing textures albedo
  • Is a MacBeth Colour Rendition Chart the Safest Way to Calibrate a Camera?

    www.colour-science.org/posts/the-colorchecker-considered-mostly-harmless/

     

     

    “Unless you have all the relevant spectral measurements, a colour rendition chart should not be used to perform colour-correction of camera imagery but only for white balancing and relative exposure adjustments.”

     

    “Using a colour rendition chart for colour-correction might dramatically increase error if the scene light source spectrum is different from the illuminant used to compute the colour rendition chart’s reference values.”

     

    “other factors make using a colour rendition chart unsuitable for camera calibration:

    – Uncontrolled geometry of the colour rendition chart with the incident illumination and the camera.
    – Unknown sample reflectances and ageing as the colour of the samples vary with time.
    – Low samples count.
    – Camera noise and flare.
    – Etc…

     

    “Those issues are well understood in the VFX industry, and when receiving plates, we almost exclusively use colour rendition charts to white balance and perform relative exposure adjustments, i.e. plate neutralisation.”

    ,
    Read more: Is a MacBeth Colour Rendition Chart the Safest Way to Calibrate a Camera?
  • Polarised vs unpolarized filtering

    A light wave that is vibrating in more than one plane is referred to as unpolarized light. … Polarized light waves are light waves in which the vibrations occur in a single plane. The process of transforming unpolarized light into polarized light is known as polarization.

    en.wikipedia.org/wiki/Polarizing_filter_(photography)

     

    Light reflected from a non-metallic surface becomes polarized; this effect is maximum at Brewster’s angle, about 56° from the vertical for common glass.

     

    A polarizer rotated to pass only light polarized in the direction perpendicular to the reflected light will absorb much of it. This absorption allows glare reflected from, for example, a body of water or a road to be reduced. Reflections from shiny surfaces (e.g. vegetation, sweaty skin, water surfaces, glass) are also reduced. This allows the natural color and detail of what is beneath to come through. Reflections from a window into a dark interior can be much reduced, allowing it to be seen through. (The same effects are available for vision by using polarizing sunglasses.)

     

    www.physicsclassroom.com/class/light/u12l1e.cfm

     

    Some of the light coming from the sky is polarized (bees use this phenomenon for navigation). The electrons in the air molecules cause a scattering of sunlight in all directions. This explains why the sky is not dark during the day. But when looked at from the sides, the light emitted from a specific electron is totally polarized.[3] Hence, a picture taken in a direction at 90 degrees from the sun can take advantage of this polarization. Use of a polarizing filter, in the correct direction, will filter out the polarized component of skylight, darkening the sky; the landscape below it, and clouds, will be less affected, giving a photograph with a darker and more dramatic sky, and emphasizing the clouds.

     

    There are two types of polarizing filters readily available, linear and “circular”, which have exactly the same effect photographically. But the metering and auto-focus sensors in certain cameras, including virtually all auto-focus SLRs, will not work properly with linear polarizers because the beam splitters used to split off the light for focusing and metering are polarization-dependent.

     

    Polarizing filters reduce the light passed through to the film or sensor by about one to three stops (2–8×) depending on how much of the light is polarized at the filter angle selected. Auto-exposure cameras will adjust for this by widening the aperture, lengthening the time the shutter is open, and/or increasing the ASA/ISO speed of the camera.

     

    www.adorama.com/alc/nd-filter-vs-polarizer-what%25e2%2580%2599s-the-difference

     

    Neutral Density (ND) filters help control image exposure by reducing the light that enters the camera so that you can have more control of your depth of field and shutter speed. Polarizers or polarizing filters work in a similar way, but the difference is that they selectively let light waves of a certain polarization pass through. This effect helps create more vivid colors in an image, as well as manage glare and reflections from water surfaces. Both are regarded as some of the best filters for landscape and travel photography as they reduce the dynamic range in high-contrast images, thus enabling photographers to capture more realistic and dramatic sceneries.

     

    shopfelixgray.com/blog/polarized-vs-non-polarized-sunglasses/

     

    www.eyebuydirect.com/blog/difference-polarized-nonpolarized-sunglasses/

     

    , ,
    Read more: Polarised vs unpolarized filtering
  • PBR Color Reference List for Materials – by Grzegorz Baran

    The list should be helpful for every material artist who work on PBR materials as it contains over 200 color values measured with PCE-RGB2 1002 Color Spectrometer device and presented in linear and sRGB (2.2) gamma space.

    All color values, HUE and Saturation in this list come from measurements taken with PCE-RGB2 1002 Color Spectrometer device and are presented in linear and sRGB (2.2) gamma space (more info at the end of this video) I calculated Relative Luminance and Luminance values based on captured color using my own equation which takes color based luminance perception into consideration. Bare in mind that there is no ‘one’ color per substance as nothing in nature is even 100% uniform and any value in +/-10% range from these should be considered as correct one. Therefore this list should be always considered as a color reference for material’s albedos, not ulitimate and absolute truth.

     

    ,
    Read more: PBR Color Reference List for Materials – by Grzegorz Baran

LIGHTING