COLOR

  • Björn Ottosson – OKHSV and OKHSL – Two new color spaces for color picking

    https://bottosson.github.io/misc/colorpicker

     

    https://bottosson.github.io/posts/colorpicker/

     

    https://www.smashingmagazine.com/2024/10/interview-bjorn-ottosson-creator-oklab-color-space/

     

    One problem with sRGB is that in a gradient between blue and white, it becomes a bit purple in the middle of the transition. That’s because sRGB really isn’t created to mimic how the eye sees colors; rather, it is based on how CRT monitors work. That means it works with certain frequencies of red, green, and blue, and also the non-linear coding called gamma. It’s a miracle it works as well as it does, but it’s not connected to color perception. When using those tools, you sometimes get surprising results, like purple in the gradient.

     

     

    There were also attempts to create simple models matching human perception based on XYZ, but as it turned out, it’s not possible to model all color vision that way. Perception of color is incredibly complex and depends, among other things, on whether it is dark or light in the room and the background color it is against. When you look at a photograph, it also depends on what you think the color of the light source is. The dress is a typical example of color vision being very context-dependent. It is almost impossible to model this perfectly.

     

    I based Oklab on two other color spaces, CIECAM16 and IPT. I used the lightness and saturation prediction from CIECAM16, which is a color appearance model, as a target. I actually wanted to use the datasets used to create CIECAM16, but I couldn’t find them.

     

    IPT was designed to have better hue uniformity. In experiments, they asked people to match light and dark colors, saturated and unsaturated colors, which resulted in a dataset for which colors, subjectively, have the same hue. IPT has a few other issues but is the basis for hue in Oklab.

     

    In the Munsell color system, colors are described with three parameters, designed to match the perceived appearance of colors: Hue, Chroma and Value. The parameters are designed to be independent and each have a uniform scale. This results in a color solid with an irregular shape. The parameters are designed to be independent and each have a uniform scale. This results in a color solid with an irregular shape. Modern color spaces and models, such as CIELAB, Cam16 and Björn Ottosson own Oklab, are very similar in their construction.

     

     

    By far the most used color spaces today for color picking are HSL and HSV, two representations introduced in the classic 1978 paper “Color Spaces for Computer Graphics”. HSL and HSV designed to roughly correlate with perceptual color properties while being very simple and cheap to compute.

     

    Today HSL and HSV are most commonly used together with the sRGB color space.

     

     

    One of the main advantages of HSL and HSV over the different Lab color spaces is that they map the sRGB gamut to a cylinder. This makes them easy to use since all parameters can be changed independently, without the risk of creating colors outside of the target gamut.

     

     

    The main drawback on the other hand is that their properties don’t match human perception particularly well.
    Reconciling these conflicting goals perfectly isn’t possible, but given that HSV and HSL don’t use anything derived from experiments relating to human perception, creating something that makes a better tradeoff does not seem unreasonable.

     

     

    With this new lightness estimate, we are ready to look into the construction of Okhsv and Okhsl.

     

     

    , ,
    Read more: Björn Ottosson – OKHSV and OKHSL – Two new color spaces for color picking
  • HDR and Color

    https://www.soundandvision.com/content/nits-and-bits-hdr-and-color

    In HD we often refer to the range of available colors as a color gamut. Such a color gamut is typically plotted on a two-dimensional diagram, called a CIE chart, as shown in at the top of this blog. Each color is characterized by its x/y coordinates.

    Good enough for government work, perhaps. But for HDR, with its higher luminance levels and wider color, the gamut becomes three-dimensional.

    For HDR the color gamut therefore becomes a characteristic we now call the color volume. It isn’t easy to show color volume on a two-dimensional medium like the printed page or a computer screen, but one method is shown below. As the luminance becomes higher, the picture eventually turns to white. As it becomes darker, it fades to black. The traditional color gamut shown on the CIE chart is simply a slice through this color volume at a selected luminance level, such as 50%.

    Three different color volumes—we still refer to them as color gamuts though their third dimension is important—are currently the most significant. The first is BT.709 (sometimes referred to as Rec.709), the color gamut used for pre-UHD/HDR formats, including standard HD.

    The largest is known as BT.2020; it encompasses (roughly) the range of colors visible to the human eye (though ET might find it insufficient!).

    Between these two is the color gamut used in digital cinema, known as DCI-P3.

    sRGB

    D65

     

    , ,
    Read more: HDR and Color
  • Tim Kang – calibrated white light values in sRGB color space

    https://www.linkedin.com/posts/timkang_colorimetry-cinematography-nerdalert-activity-7058330978007584769-9xln

     

    8bit sRGB encoded
    2000K 255 139 22
    2700K 255 172 89
    3000K 255 184 109
    3200K 255 190 122
    4000K 255 211 165
    4300K 255 219 178
    D50 255 235 205
    D55 255 243 224
    D5600 255 244 227
    D6000 255 249 240
    D65 255 255 255
    D10000 202 221 255
    D20000 166 196 255

    8bit Rec709 Gamma 2.4
    2000K 255 145 34
    2700K 255 177 97
    3000K 255 187 117
    3200K 255 193 129
    4000K 255 214 170
    4300K 255 221 182
    D50 255 236 208
    D55 255 243 226
    D5600 255 245 229
    D6000 255 250 241
    D65 255 255 255
    D10000 204 222 255
    D20000 170 199 255

    8bit Display P3 encoded
    2000K 255 154 63
    2700K 255 185 109
    3000K 255 195 127
    3200K 255 201 138
    4000K 255 219 176
    4300K 255 225 187
    D50 255 239 212
    D55 255 245 228
    D5600 255 246 231
    D6000 255 251 242
    D65 255 255 255
    D10000 208 223 255
    D20000 175 199 255

    10bit Rec2020 PQ (100 nits)
    2000K 520 435 273
    2700K 520 466 358
    3000K 520 475 384
    3200K 520 480 399
    4000K 520 495 446
    4300K 520 500 458
    D50 520 510 482
    D55 520 514 497
    D5600 520 514 500
    D6000 520 517 509
    D65 520 520 520
    D10000 479 489 520
    D20000 448 464 520

     

    ,
    Read more: Tim Kang – calibrated white light values in sRGB color space

LIGHTING

Collections
| Explore posts
| Design And Composition
| Featured AI

Popular Searches
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke




Subscribe to PixelSham.com RSS for free
Subscribe to PixelSham.com RSS for free