COLOR

  • OLED vs QLED – What TV is better?

     

    Supported by LG, Philips, Panasonic and Sony sell the OLED system TVs.
    OLED stands for “organic light emitting diode.”
    It is a fundamentally different technology from LCD, the major type of TV today.
    OLED is “emissive,” meaning the pixels emit their own light.

     

    Samsung is branding its best TVs with a new acronym: “QLED”
    QLED (according to Samsung) stands for “quantum dot LED TV.”
    It is a variation of the common LED LCD, adding a quantum dot film to the LCD “sandwich.”
    QLED, like LCD, is, in its current form, “transmissive” and relies on an LED backlight.

     

    OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks.

    QLED, as an improvement over OLED, significantly improves the picture quality. QLED can produce an even wider range of colors than OLED, which says something about this new tech. QLED is also known to produce up to 40% higher luminance efficiency than OLED technology. Further, many tests conclude that QLED is far more efficient in terms of power consumption than its predecessor, OLED.

     

    When analyzing TVs color, it may be beneficial to consider at least 3 elements:
    “Color Depth”, “Color Gamut”, and “Dynamic Range”.

     

    Color Depth (or “Bit-Depth”, e.g. 8-bit, 10-bit, 12-bit) determines how many distinct color variations (tones/shades) can be viewed on a given display.

     

    Color Gamut (e.g. WCG) determines which specific colors can be displayed from a given “Color Space” (Rec.709, Rec.2020, DCI-P3) (i.e. the color range).

     

    Dynamic Range (SDR, HDR) determines the luminosity range of a specific color – from its darkest shade (or tone) to its brightest.

     

    The overall brightness range of a color will be determined by a display’s “contrast ratio”, that is, the ratio of luminance between the darkest black that can be produced and the brightest white.

     

    Color Volume is the “Color Gamut” + the “Dynamic/Luminosity Range”.
    A TV’s Color Volume will not only determine which specific colors can be displayed (the color range) but also that color’s luminosity range, which will have an affect on its “brightness”, and “colorfulness” (intensity and saturation).

     

    The better the colour volume in a TV, the closer to life the colours appear.

     

    QLED TV can express nearly all of the colours in the DCI-P3 colour space, and of those colours, express 100% of the colour volume, thereby producing an incredible range of colours.

     

    With OLED TV, when the image is too bright, the percentage of the colours in the colour volume produced by the TV drops significantly. The colours get washed out and can only express around 70% colour volume, making the picture quality drop too.

     

    Note. OLED TV uses organic material, so it may lose colour expression as it ages.

     

    Resources for more reading and comparison below

    www.avsforum.com/forum/166-lcd-flat-panel-displays/2812161-what-color-volume.html

     

    www.newtechnologytv.com/qled-vs-oled/

     

    news.samsung.com/za/qled-tv-vs-oled-tv

     

    www.cnet.com/news/qled-vs-oled-samsungs-tv-tech-and-lgs-tv-tech-are-not-the-same/

     

    ,
    Read more: OLED vs QLED – What TV is better?
  • Capturing textures albedo

    Building a Portable PBR Texture Scanner by Stephane Lb
    http://rtgfx.com/pbr-texture-scanner/

     

     

    How To Split Specular And Diffuse In Real Images, by John Hable
    http://filmicworlds.com/blog/how-to-split-specular-and-diffuse-in-real-images/

     

    Capturing albedo using a Spectralon
    https://www.activision.com/cdn/research/Real_World_Measurements_for_Call_of_Duty_Advanced_Warfare.pdf

    Real_World_Measurements_for_Call_of_Duty_Advanced_Warfare.pdf

    Spectralon is a teflon-based pressed powderthat comes closest to being a pure Lambertian diffuse material that reflects 100% of all light. If we take an HDR photograph of the Spectralon alongside the material to be measured, we can derive thediffuse albedo of that material.

     

    The process to capture diffuse reflectance is very similar to the one outlined by Hable.

     

    1. We put a linear polarizing filter in front of the camera lens and a second linear polarizing filterin front of a modeling light or a flash such that the two filters are oriented perpendicular to eachother, i.e. cross polarized.

     

    2. We place Spectralon close to and parallel with the material we are capturing and take brack-eted shots of the setup7. Typically, we’ll take nine photographs, from -4EV to +4EV in 1EVincrements.

     

    3. We convert the bracketed shots to a linear HDR image. We found that many HDR packagesdo not produce an HDR image in which the pixel values are linear. PTGui is an example of apackage which does generate a linear HDR image. At this point, because of the cross polarization,the image is one of surface diffuse response.

     

    4. We open the file in Photoshop and normalize the image by color picking the Spectralon, filling anew layer with that color and setting that layer to “Divide”. This sets the Spectralon to 1 in theimage. All other color values are relative to this so we can consider them as diffuse albedo.

    , , ,
    Read more: Capturing textures albedo
  • Gamma correction

    http://www.normankoren.com/makingfineprints1A.html#Gammabox

     

    https://en.wikipedia.org/wiki/Gamma_correction

     

    http://www.photoscientia.co.uk/Gamma.htm

     

    https://www.w3.org/Graphics/Color/sRGB.html

     

    http://www.eizoglobal.com/library/basics/lcd_display_gamma/index.html

     

    https://forum.reallusion.com/PrintTopic308094.aspx

     

    Basically, gamma is the relationship between the brightness of a pixel as it appears on the screen, and the numerical value of that pixel. Generally Gamma is just about defining relationships.

    Three main types:
    – Image Gamma encoded in images
    – Display Gammas encoded in hardware and/or viewing time
    – System or Viewing Gamma which is the net effect of all gammas when you look back at a final image. In theory this should flatten back to 1.0 gamma.

     

    Our eyes, different camera or video recorder devices do not correctly capture luminance. (they are not linear)
    Different display devices (monitor, phone screen, TV) do not display luminance correctly neither. So, one needs to correct them, therefore the gamma correction function.

    The human perception of brightness, under common illumination conditions (not pitch black nor blindingly bright), follows an approximate power function (note: no relation to the gamma function), with greater sensitivity to relative differences between darker tones than between lighter ones, consistent with the Stevens’ power law for brightness perception. If images are not gamma-encoded, they allocate too many bits or too much bandwidth to highlights that humans cannot differentiate, and too few bits or too little bandwidth to shadow values that humans are sensitive to and would require more bits/bandwidth to maintain the same visual quality.

    https://blog.amerlux.com/4-things-architects-should-know-about-lumens-vs-perceived-brightness/

    cones manage color receptivity, rods determine how large our pupils should be. The larger (more dilated) our pupils are, the more light enters our eyes. In dark situations, our rods dilate our pupils so we can see better. This impacts how we perceive brightness.

     

    https://www.cambridgeincolour.com/tutorials/gamma-correction.htm

    A gamma encoded image has to have “gamma correction” applied when it is viewed — which effectively converts it back into light from the original scene. In other words, the purpose of gamma encoding is for recording the image — not for displaying the image. Fortunately this second step (the “display gamma”) is automatically performed by your monitor and video card. The following diagram illustrates how all of this fits together:

     

    Display gamma
    The display gamma can be a little confusing because this term is often used interchangeably with gamma correction, since it corrects for the file gamma. This is the gamma that you are controlling when you perform monitor calibration and adjust your contrast setting. Fortunately, the industry has converged on a standard display gamma of 2.2, so one doesn’t need to worry about the pros/cons of different values.

     

    Gamma encoding of images is used to optimize the usage of bits when encoding an image, or bandwidth used to transport an image, by taking advantage of the non-linear manner in which humans perceive light and color. Human response to luminance is also biased. Especially sensible to dark areas.
    Thus, the human visual system has a non-linear response to the power of the incoming light, so a fixed increase in power will not have a fixed increase in perceived brightness.
    We perceive a value as half bright when it is actually 18% of the original intensity not 50%. As such, our perception is not linear.

     

    You probably already know that a pixel can have any ‘value’ of Red, Green, and Blue between 0 and 255, and you would therefore think that a pixel value of 127 would appear as half of the maximum possible brightness, and that a value of 64 would represent one-quarter brightness, and so on. Well, that’s just not the case.

     

    Pixar Color Management
    https://renderman.pixar.com/color-management


    – Why do we need linear gamma?
    Because light works linearly and therefore only works properly when it lights linear values.

     

    – Why do we need to view in sRGB?
    Because the resulting linear image in not suitable for viewing, but contains all the proper data. Pixar’s IT viewer can compensate by showing the rendered image through a sRGB look up table (LUT), which is identical to what will be the final image after the sRGB gamma curve is applied in post.

    This would be simple enough if every software would play by the same rules, but they don’t. In fact, the default gamma workflow for many 3D software is incorrect. This is where the knowledge of a proper imaging workflow comes in to save the day.

     

    Cathode-ray tubes have a peculiar relationship between the voltage applied to them, and the amount of light emitted. It isn’t linear, and in fact it follows what’s called by mathematicians and other geeks, a ‘power law’ (a number raised to a power). The numerical value of that power is what we call the gamma of the monitor or system.

     

    Thus. Gamma describes the nonlinear relationship between the pixel levels in your computer and the luminance of your monitor (the light energy it emits) or the reflectance of your prints. The equation is,

    Luminance = C * value^gamma + black level

    – C is set by the monitor Contrast control.

    – Value is the pixel level normalized to a maximum of 1. For an 8 bit monitor with pixel levels 0 – 255, value = (pixel level)/255.

     

    – Black level is set by the (misnamed) monitor Brightness control. The relationship is linear if gamma = 1. The chart illustrates the relationship for gamma = 1, 1.5, 1.8 and 2.2 with C = 1 and black level = 0.

     

    Gamma affects middle tones; it has no effect on black or white. If gamma is set too high, middle tones appear too dark. Conversely, if it’s set too low, middle tones appear too light.

     

    The native gamma of monitors – the relationship between grid voltage and luminance – is typically around 2.5, though it can vary considerably. This is well above any of the display standards, so you must be aware of gamma and correct it.

     

    A display gamma of 2.2 is the de facto standard for the Windows operating system and the Internet-standard sRGB color space.

     

    The old standard for Mcintosh and prepress file interchange is 1.8. It is now 2.2 as well.

     

    Video cameras have gammas of approximately 0.45 – the inverse of 2.2. The viewing or system gamma is the product of the gammas of all the devices in the system – the image acquisition device (film+scanner or digital camera), color lookup table (LUT), and monitor. System gamma is typically between 1.1 and 1.5. Viewing flare and other factor make images look flat at system gamma = 1.0.

     

    Most laptop LCD screens are poorly suited for critical image editing because gamma is extremely sensitive to viewing angle.

     

    More about screens

    https://www.cambridgeincolour.com/tutorials/gamma-correction.htm

    CRT Monitors. Due to an odd bit of engineering luck, the native gamma of a CRT is 2.5 — almost the inverse of our eyes. Values from a gamma-encoded file could therefore be sent straight to the screen and they would automatically be corrected and appear nearly OK. However, a small gamma correction of ~1/1.1 needs to be applied to achieve an overall display gamma of 2.2. This is usually already set by the manufacturer’s default settings, but can also be set during monitor calibration.

    LCD Monitors. LCD monitors weren’t so fortunate; ensuring an overall display gamma of 2.2 often requires substantial corrections, and they are also much less consistent than CRT’s. LCDs therefore require something called a look-up table (LUT) in order to ensure that input values are depicted using the intended display gamma (amongst other things). See the tutorial on monitor calibration: look-up tables for more on this topic.

    About black level (brightness). Your monitor’s brightness control (which should actually be called black level) can be adjusted using the mostly black pattern on the right side of the chart. This pattern contains two dark gray vertical bars, A and B, which increase in luminance with increasing gamma. (If you can’t see them, your black level is way low.) The left bar (A) should be just above the threshold of visibility opposite your chosen gamma (2.2 or 1.8) – it should be invisible where gamma is lower by about 0.3. The right bar (B) should be distinctly visible: brighter than (A), but still very dark. This chart is only for monitors; it doesn’t work on printed media.

     

    The 1.8 and 2.2 gray patterns at the bottom of the image represent a test of monitor quality and calibration. If your monitor is functioning properly and calibrated to gamma = 2.2 or 1.8, the corresponding pattern will appear smooth neutral gray when viewed from a distance. Any waviness, irregularity, or color banding indicates incorrect monitor calibration or poor performance.

     

    Another test to see whether one’s computer monitor is properly hardware adjusted and can display shadow detail in sRGB images properly, they should see the left half of the circle in the large black square very faintly but the right half should be clearly visible. If not, one can adjust their monitor’s contrast and/or brightness setting. This alters the monitor’s perceived gamma. The image is best viewed against a black background.

     

    This procedure is not suitable for calibrating or print-proofing a monitor. It can be useful for making a monitor display sRGB images approximately correctly, on systems in which profiles are not used (for example, the Firefox browser prior to version 3.0 and many others) or in systems that assume untagged source images are in the sRGB colorspace.

     

    On some operating systems running the X Window System, one can set the gamma correction factor (applied to the existing gamma value) by issuing the command xgamma -gamma 0.9 for setting gamma correction factor to 0.9, and xgamma for querying current value of that factor (the default is 1.0). In OS X systems, the gamma and other related screen calibrations are made through the System Preference

     

    https://www.kinematicsoup.com/news/2016/6/15/gamma-and-linear-space-what-they-are-how-they-differ

    Linear color space means that numerical intensity values correspond proportionally to their perceived intensity. This means that the colors can be added and multiplied correctly. A color space without that property is called ”non-linear”. Below is an example where an intensity value is doubled in a linear and a non-linear color space. While the corresponding numerical values in linear space are correct, in the non-linear space (gamma = 0.45, more on this later) we can’t simply double the value to get the correct intensity.

     

    The need for gamma arises for two main reasons: The first is that screens have been built with a non-linear response to intensity. The other is that the human eye can tell the difference between darker shades better than lighter shades. This means that when images are compressed to save space, we want to have greater accuracy for dark intensities at the expense of lighter intensities. Both of these problems are resolved using gamma correction, which is to say the intensity of every pixel in an image is put through a power function. Specifically, gamma is the name given to the power applied to the image.

     

    CRT screens, simply by how they work, apply a gamma of around 2.2, and modern LCD screens are designed to mimic that behavior. A gamma of 2.2, the reciprocal of 0.45, when applied to the brightened images will darken them, leaving the original image.

    , , , ,
    Read more: Gamma correction
  • What is OLED and what can it do for your TV

    https://www.cnet.com/news/what-is-oled-and-what-can-it-do-for-your-tv/

    OLED stands for Organic Light Emitting Diode. Each pixel in an OLED display is made of a material that glows when you jab it with electricity. Kind of like the heating elements in a toaster, but with less heat and better resolution. This effect is called electroluminescence, which is one of those delightful words that is big, but actually makes sense: “electro” for electricity, “lumin” for light and “escence” for, well, basically “essence.”

    OLED TV marketing often claims “infinite” contrast ratios, and while that might sound like typical hyperbole, it’s one of the extremely rare instances where such claims are actually true. Since OLED can produce a perfect black, emitting no light whatsoever, its contrast ratio (expressed as the brightest white divided by the darkest black) is technically infinite.

    OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks.

    ,
    Read more: What is OLED and what can it do for your TV

LIGHTING

  • HDRI Median Cut plugin

    www.hdrlabs.com/picturenaut/plugins.html

     

     

    Note. The Median Cut algorithm is typically used for color quantization, which involves reducing the number of colors in an image while preserving its visual quality. It doesn’t directly provide a way to identify the brightest areas in an image. However, if you’re interested in identifying the brightest areas, you might want to look into other methods like thresholding, histogram analysis, or edge detection, through openCV for example.

     

    Here is an openCV example:

     

    # bottom left coordinates = 0,0
    import numpy as np
    import cv2
    
    # Load the HDR or EXR image
    image = cv2.imread('your_image_path.exr', cv2.IMREAD_UNCHANGED)  # Load as-is without modification
    
    # Calculate the luminance from the HDR channels (assuming RGB format)
    luminance = np.dot(image[..., :3], [0.299, 0.587, 0.114])
    
    # Set a threshold value based on estimated EV
    threshold_value = 2.4  # Estimated threshold value based on 4.8 EV
    
    # Apply the threshold to identify bright areas
    # The luminance array contains the calculated luminance values for each pixel in the image. # The threshold_value is a user-defined value that represents a cutoff point, separating "bright" and "dark" areas in terms of perceived luminance.
    thresholded = (luminance > threshold_value) * 255 
    
    # Convert the thresholded image to uint8 for contour detection 
    thresholded = thresholded.astype(np.uint8) 
    
    # Find contours of the bright areas 
    contours, _ = cv2.findContours(thresholded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 
    
    # Create a list to store the bounding boxes of bright areas 
    bright_areas = [] 
    
    # Iterate through contours and extract bounding boxes for contour in contours: 
    x, y, w, h = cv2.boundingRect(contour) 
    
    # Adjust y-coordinate based on bottom-left origin 
    y_bottom_left_origin = image.shape[0] - (y + h) bright_areas.append((x, y_bottom_left_origin, x + w, y_bottom_left_origin + h)) 
    
    # Store as (x1, y1, x2, y2) 
    # Print the identified bright areas 
    print("Bright Areas (x1, y1, x2, y2):") for area in bright_areas: print(area)

     

    More details

     

    Luminance and Exposure in an EXR Image:

    • An EXR (Extended Dynamic Range) image format is often used to store high dynamic range (HDR) images that contain a wide range of luminance values, capturing both dark and bright areas.
    • Luminance refers to the perceived brightness of a pixel in an image. In an RGB image, luminance is often calculated using a weighted sum of the red, green, and blue channels, where different weights are assigned to each channel to account for human perception.
    • In an EXR image, the pixel values can represent radiometrically accurate scene values, including actual radiance or irradiance levels. These values are directly related to the amount of light emitted or reflected by objects in the scene.

     

    The luminance line is calculating the luminance of each pixel in the image using a weighted sum of the red, green, and blue channels. The three float values [0.299, 0.587, 0.114] are the weights used to perform this calculation.

     

    These weights are based on the concept of luminosity, which aims to approximate the perceived brightness of a color by taking into account the human eye’s sensitivity to different colors. The values are often derived from the NTSC (National Television System Committee) standard, which is used in various color image processing operations.

     

    Here’s the breakdown of the float values:

    • 0.299: Weight for the red channel.
    • 0.587: Weight for the green channel.
    • 0.114: Weight for the blue channel.

     

    The weighted sum of these channels helps create a grayscale image where the pixel values represent the perceived brightness. This technique is often used when converting a color image to grayscale or when calculating luminance for certain operations, as it takes into account the human eye’s sensitivity to different colors.

     

    For the threshold, remember that the exact relationship between EV values and pixel values can depend on the tone-mapping or normalization applied to the HDR image, as well as the dynamic range of the image itself.

     

    To establish a relationship between exposure and the threshold value, you can consider the relationship between linear and logarithmic scales:

    1. Linear and Logarithmic Scales:
      • Exposure values in an EXR image are often represented in logarithmic scales, such as EV (exposure value). Each increment in EV represents a doubling or halving of the amount of light captured.
      • Threshold values for luminance thresholding are usually linear, representing an actual luminance level.
    2. Conversion Between Scales:

      • To establish a mathematical relationship, you need to convert between the logarithmic exposure scale and the linear threshold scale.

      • One common method is to use a power function. For instance, you can use a power function to convert EV to a linear intensity value.



       

      threshold_value = base_value * (2 ** EV)



      Here, EV is the exposure value, base_value is a scaling factor that determines the relationship between EV and threshold_value, and 2 ** EV is used to convert the logarithmic EV to a linear intensity value.


    3. Choosing the Base Value:
      • The base_value factor should be determined based on the dynamic range of your EXR image and the specific luminance values you are dealing with.
      • You may need to experiment with different values of base_value to achieve the desired separation of bright areas from the rest of the image.

     

    Let’s say you have an EXR image with a dynamic range of 12 EV, which is a common range for many high dynamic range images. In this case, you want to set a threshold value that corresponds to a certain number of EV above the middle gray level (which is often considered to be around 0.18).

    Here’s an example of how you might determine a base_value to achieve this:

     

    # Define the dynamic range of the image in EV
    dynamic_range = 12
    
    # Choose the desired number of EV above middle gray for thresholding
    desired_ev_above_middle_gray = 2
    
    # Calculate the threshold value based on the desired EV above middle gray
    threshold_value = 0.18 * (2 ** (desired_ev_above_middle_gray / dynamic_range))
    
    print("Threshold Value:", threshold_value)
    , ,
    Read more: HDRI Median Cut plugin

Collections
| Explore posts
| Design And Composition
| Featured AI

Popular Searches
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke





Subscribe to PixelSham.com RSS for free
Subscribe to PixelSham.com RSS for free