COLOR

  • What is a Gamut or Color Space and why do I need to know about CIE

    http://www.xdcam-user.com/2014/05/what-is-a-gamut-or-color-space-and-why-do-i-need-to-know-about-it/

     

    In video terms gamut is normally related to as the full range of colours and brightness that can be either captured or displayed.

     

    Generally speaking all color gamuts recommendations are trying to define a reasonable level of color representation based on available technology and hardware. REC-601 represents the old TVs. REC-709 is currently the most distributed solution. P3 is mainly available in movie theaters and is now being adopted in some of the best new 4K HDR TVs. Rec2020 (a wider space than P3 that improves on visibke color representation) and ACES (the full coverage of visible color) are other common standards which see major hardware development these days.

     

     

    To compare and visualize different solution (across video and printing solutions), most developers use the CIE color model chart as a reference.
    The CIE color model is a color space model created by the International Commission on Illumination known as the Commission Internationale de l’Elcairage (CIE) in 1931. It is also known as the CIE XYZ color space or the CIE 1931 XYZ color space.
    This chart represents the first defined quantitative link between distributions of wavelengths in the electromagnetic visible spectrum, and physiologically perceived colors in human color vision. Or basically, the range of color a typical human eye can perceive through visible light.

     

    Note that while the human perception is quite wide, and generally speaking biased towards greens (we are apes after all), the amount of colors available through nature, generated through light reflection, tend to be a much smaller section. This is defined by the Pointer’s Chart.

     

    In short. Color gamut is a representation of color coverage, used to describe data stored in images against available hardware and viewer technologies.

     

    Camera color encoding from
    https://www.slideshare.net/hpduiker/acescg-a-common-color-encoding-for-visual-effects-applications

     

    CIE 1976

    http://bernardsmith.eu/computatrum/scan_and_restore_archive_and_print/scanning/

     

    https://store.yujiintl.com/blogs/high-cri-led/understanding-cie1931-and-cie-1976

     

    The CIE 1931 standard has been replaced by a CIE 1976 standard. Below we can see the significance of this.

     

    People have observed that the biggest issue with CIE 1931 is the lack of uniformity with chromaticity, the three dimension color space in rectangular coordinates is not visually uniformed.

     

    The CIE 1976 (also called CIELUV) was created by the CIE in 1976. It was put forward in an attempt to provide a more uniform color spacing than CIE 1931 for colors at approximately the same luminance

     

    The CIE 1976 standard colour space is more linear and variations in perceived colour between different people has also been reduced. The disproportionately large green-turquoise area in CIE 1931, which cannot be generated with existing computer screens, has been reduced.

     

    If we move from CIE 1931 to the CIE 1976 standard colour space we can see that the improvements made in the gamut for the “new” iPad screen (as compared to the “old” iPad 2) are more evident in the CIE 1976 colour space than in the CIE 1931 colour space, particularly in the blues from aqua to deep blue.

     

     

    https://dot-color.com/2012/08/14/color-space-confusion/

    Despite its age, CIE 1931, named for the year of its adoption, remains a well-worn and familiar shorthand throughout the display industry. CIE 1931 is the primary language of customers. When a customer says that their current display “can do 72% of NTSC,” they implicitly mean 72% of NTSC 1953 color gamut as mapped against CIE 1931.

    , ,
    Read more: What is a Gamut or Color Space and why do I need to know about CIE
  • No one could see the colour blue until modern times

    https://www.businessinsider.com/what-is-blue-and-how-do-we-see-color-2015-2

     

    The way that humans see the world… until we have a way to describe something, even something so fundamental as a colour, we may not even notice that something it’s there.

     

    Ancient languages didn’t have a word for blue — not Greek, not Chinese, not Japanese, not Hebrew, not Icelandic cultures. And without a word for the colour, there’s evidence that they may not have seen it at all.

    https://www.wnycstudios.org/story/211119-colors

     

    Every language first had a word for black and for white, or dark and light. The next word for a colour to come into existence — in every language studied around the world — was red, the colour of blood and wine.

    After red, historically, yellow appears, and later, green (though in a couple of languages, yellow and green switch places). The last of these colours to appear in every language is blue.

     

    The only ancient culture to develop a word for blue was the Egyptians — and as it happens, they were also the only culture that had a way to produce a blue dye.

    https://mymodernmet.com/shades-of-blue-color-history/

     

    Considered to be the first ever synthetically produced color pigment, Egyptian blue (also known as cuprorivaite) was created around 2,200 B.C. It was made from ground limestone mixed with sand and a copper-containing mineral, such as azurite or malachite, which was then heated between 1470 and 1650°F. The result was an opaque blue glass which then had to be crushed and combined with thickening agents such as egg whites to create a long-lasting paint or glaze.

     

     

    If you think about it, blue doesn’t appear much in nature — there aren’t animals with blue pigments (except for one butterfly, Obrina Olivewing, all animals generate blue through light scattering), blue eyes are rare (also blue through light scattering), and blue flowers are mostly human creations. There is, of course, the sky, but is that really blue?

     

     

    So before we had a word for it, did people not naturally see blue? Do you really see something if you don’t have a word for it?

     

    A researcher named Jules Davidoff traveled to Namibia to investigate this, where he conducted an experiment with the Himba tribe, who speak a language that has no word for blue or distinction between blue and green. When shown a circle with 11 green squares and one blue, they couldn’t pick out which one was different from the others.

     

    When looking at a circle of green squares with only one slightly different shade, they could immediately spot the different one. Can you?

     

    Davidoff says that without a word for a colour, without a way of identifying it as different, it’s much harder for us to notice what’s unique about it — even though our eyes are physically seeing the blocks it in the same way.

     

    Further research brought to wider discussions about color perception in humans. Everything that we make is based on the fact that humans are trichromatic. The television only has 3 colors. Our color printers have 3 different colors. But some people, and in specific some women seemed to be more sensible to color differences… mainly because they’re just more aware or – because of the job that they do.

    Eventually this brought to the discovery of a small percentage of the population, referred to as tetrachromats, which developed an extra cone sensitivity to yellow, likely due to gene modifications.

    The interesting detail about these is that even between tetrachromats, only the ones that had a reason to develop, label and work with extra color sensitivity actually developed the ability to use their native skills.

     

    So before blue became a common concept, maybe humans saw it. But it seems they didn’t know they were seeing it.

    If you see something yet can’t see it, does it exist? Did colours come into existence over time? Not technically, but our ability to notice them… may have…

     

    , ,
    Read more: No one could see the colour blue until modern times

LIGHTING

  • Magnific.ai Relight – change the entire lighting of a scene

     

    It’s a new Magnific spell that allows you to change the entire lighting of a scene and, optionally, the background with just:

    1/ A prompt OR
    2/ A reference image OR
    3/ A light map (drawing your own lights)

     

    https://magnific.ai/

     

    https://x.com/javilopen/status/1805274155065176489

     

    , ,
    Read more: Magnific.ai Relight – change the entire lighting of a scene
  • Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurements

    Also see: https://www.pixelsham.com/2015/05/16/how-aperture-shutter-speed-and-iso-affect-your-photos/

     

    In photography, exposure value (EV) is a number that represents a combination of a camera’s shutter speed and f-number, such that all combinations that yield the same exposure have the same EV (for any fixed scene luminance).

     

     

    The EV concept was developed in an attempt to simplify choosing among combinations of equivalent camera settings. Although all camera settings with the same EV nominally give the same exposure, they do not necessarily give the same picture. EV is also used to indicate an interval on the photographic exposure scale. 1 EV corresponding to a standard power-of-2 exposure step, commonly referred to as a stop

     

    EV 0 corresponds to an exposure time of 1 sec and a relative aperture of f/1.0. If the EV is known, it can be used to select combinations of exposure time and f-number.

     

    https://www.streetdirectory.com/travel_guide/141307/photography/exposure_value_ev_and_exposure_compensation.html

    Note EV does not equal to photographic exposure. Photographic Exposure is defined as how much light hits the camera’s sensor. It depends on the camera settings mainly aperture and shutter speed. Exposure value (known as EV) is a number that represents the exposure setting of the camera.

     

    Thus, strictly, EV is not a measure of luminance (indirect or reflected exposure) or illuminance (incidental exposure); rather, an EV corresponds to a luminance (or illuminance) for which a camera with a given ISO speed would use the indicated EV to obtain the nominally correct exposure. Nonetheless, it is common practice among photographic equipment manufacturers to express luminance in EV for ISO 100 speed, as when specifying metering range or autofocus sensitivity.

     

    The exposure depends on two things: how much light gets through the lenses to the camera’s sensor and for how long the sensor is exposed. The former is a function of the aperture value while the latter is a function of the shutter speed. Exposure value is a number that represents this potential amount of light that could hit the sensor. It is important to understand that exposure value is a measure of how exposed the sensor is to light and not a measure of how much light actually hits the sensor. The exposure value is independent of how lit the scene is. For example a pair of aperture value and shutter speed represents the same exposure value both if the camera is used during a very bright day or during a dark night.

     

    Each exposure value number represents all the possible shutter and aperture settings that result in the same exposure. Although the exposure value is the same for different combinations of aperture values and shutter speeds the resulting photo can be very different (the aperture controls the depth of field while shutter speed controls how much motion is captured).

    EV 0.0 is defined as the exposure when setting the aperture to f-number 1.0 and the shutter speed to 1 second. All other exposure values are relative to that number. Exposure values are on a base two logarithmic scale. This means that every single step of EV – plus or minus 1 – represents the exposure (actual light that hits the sensor) being halved or doubled.

    https://www.streetdirectory.com/travel_guide/141307/photography/exposure_value_ev_and_exposure_compensation.html

     

    Formula

    https://en.wikipedia.org/wiki/Exposure_value

     

    https://www.scantips.com/lights/math.html

     

    which means   2EV = N² / t

    where

    • N is the relative aperture (f-number) Important: Note that f/stop values must first be squared in most calculations
    • t is the exposure time (shutter speed) in seconds

    EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

    Example: If f/16 and 1/4 second, then this is:

    (N² / t) = (16 × 16 ÷ 1/4) = (16 × 16 × 4) = 1024.

    Log₂(1024) is EV 10. Meaning, 210 = 1024.

     

    Collecting photographic exposure using Light Meters

    https://photo.stackexchange.com/questions/968/how-can-i-correctly-measure-light-using-a-built-in-camera-meter

    The exposure meter in the camera does not know whether the subject itself is bright or not. It simply measures the amount of light that comes in, and makes a guess based on that. The camera will aim for 18% gray, meaning if you take a photo of an entirely white surface, and an entirely black surface you should get two identical images which both are gray (at least in theory)

    https://en.wikipedia.org/wiki/Light_meter

    For reflected-light meters, camera settings are related to ISO speed and subject luminance by the reflected-light exposure equation:

    where

    • N is the relative aperture (f-number)
    • t is the exposure time (“shutter speed”) in seconds
    • L is the average scene luminance
    • S is the ISO arithmetic speed
    • K is the reflected-light meter calibration constant

     

    For incident-light meters, camera settings are related to ISO speed and subject illuminance by the incident-light exposure equation:

    where

    • E is the illuminance (in lux)
    • C is the incident-light meter calibration constant

     

    Two values for K are in common use: 12.5 (Canon, Nikon, and Sekonic) and 14 (Minolta, Kenko, and Pentax); the difference between the two values is approximately 1/6 EV.
    For C a value of 250 is commonly used.

     

    Nonetheless, it is common practice among photographic equipment manufacturers to also express luminance in EV for ISO 100 speed. Using K = 12.5, the relationship between EV at ISO 100 and luminance L is then :

    L = 2(EV-3)

     

    The situation with incident-light meters is more complicated than that for reflected-light meters, because the calibration constant C depends on the sensor type. Illuminance is measured with a flat sensor; a typical value for C is 250 with illuminance in lux. Using C = 250, the relationship between EV at ISO 100 and illuminance E is then :

     

    E = 2.5 * 2(EV)

     

    https://nofilmschool.com/2018/03/want-easier-and-faster-way-calculate-exposure-formula

    Three basic factors go into the exposure formula itself instead: aperture, shutter, and ISO. Plus a light meter calibration constant.

    f-stop²/shutter (in seconds) = lux * ISO/C

     

    If you at least know four of those variables, you’ll be able to calculate the missing value.

    So, say you want to figure out how much light you’re going to need in order to shoot at a certain f-stop. Well, all you do is plug in your values (you should know the f-stop, ISO, and your light meter calibration constant) into the formula below:

    lux = C (f-stop²/shutter (in seconds))/ISO

     

    Exposure Value Calculator:

    https://snapheadshots.com/resources/exposure-and-light-calculator

     

    https://www.scantips.com/lights/exposurecalc.html

     

    https://www.pointsinfocus.com/tools/exposure-settings-ev-calculator/#google_vignette

     

    From that perspective, an exposure stop is a measurement of Exposure and provides a universal linear scale to measure the increase and decrease in light, exposed to the image sensor, due to changes in shutter speed, iso & f-stop.
    +-1 stop is a doubling or halving of the amount of light let in when taking a photo.
    1 EV is just another way to say one stop of exposure change.

     

    One major use of EV (Exposure Value) is just to measure any change of exposure, where one EV implies a change of one stop of exposure. Like when we compensate our picture in the camera.

     

    If the picture comes out too dark, our manual exposure could correct the next one by directly adjusting one of the three exposure controls (f/stop, shutter speed, or ISO). Or if using camera automation, the camera meter is controlling it, but we might apply +1 EV exposure compensation (or +1 EV flash compensation) to make the result goal brighter, as desired. This use of 1 EV is just another way to say one stop of exposure change.

     

    On a perfect day the difference from sampling the sky vs the sun exposure with diffusing spot meters is about 3.2 exposure difference.

     ~15.4 EV for the sun
     ~12.2 EV for the sky
    

    That is as a ballpark. All still influenced by surroundings, accuracy parameters, fov of the sensor…

     

     

     

    EV calculator

    https://www.scantips.com/lights/evchart.html#calc

    http://www.fredparker.com/ultexp1.htm

     

    Exposure value is basically used to indicate an interval on the photographic exposure scale, with a difference of 1 EV corresponding to a standard power-of-2 exposure step, also commonly referred to as a “stop”.

     

    https://contrastly.com/a-guide-to-understanding-exposure-value-ev/

     

    Retrieving photographic exposure from an image

    All you can hope to measure with your camera and some images is the relative reflected luminance. Even if you have the camera settings. https://en.wikipedia.org/wiki/Relative_luminance

     

    If you REALLY want to know the amount of light in absolute radiometric units, you’re going to need to use some kind of absolute light meter or measured light source to calibrate your camera. For references on how to do this, see: Section 2.5 Obtaining Absolute Radiance from http://www.pauldebevec.com/Research/HDR/debevec-siggraph97.pdf

     

    IF you are still trying to gauge relative brightness, the level of the sun in Nuke can vary, but it should be in the thousands. Ie: between 30,000 and 65,0000 rgb value depending on time of the day, season and atmospherics.

     

    The values for a 12 o’clock sun, with the sun sampled at EV 15.5 (shutter 1/30, ISO 100, F22) is 32.000 RGB max values (or 32,000 pixel luminance).
    The thing to keep an eye for is the level of contrast between sunny side/fill side.  The terminator should be quite obvious,  there can be up to 3 stops difference between fill/key in sunny lit objects.

     

    Note: In Foundry’s Nuke, the software will map 18% gray to whatever your center f/stop is set to in the viewer settings (f/8 by default… change that to EV by following the instructions below).
    You can experiment with this by attaching an Exposure node to a Constant set to 0.18, setting your viewer read-out to Spotmeter, and adjusting the stops in the node up and down. You will see that a full stop up or down will give you the respective next value on the aperture scale (f8, f11, f16 etc.).
    One stop doubles or halves the amount or light that hits the filmback/ccd, so everything works in powers of 2.
    So starting with 0.18 in your constant, you will see that raising it by a stop will give you .36 as a floating point number (in linear space), while your f/stop will be f/11 and so on.

    If you set your center stop to 0 (see below) you will get a relative readout in EVs, where EV 0 again equals 18% constant gray.
    Note: make sure to set your Nuke read node to ‘raw data’

     

    In other words. Setting the center f-stop to 0 means that in a neutral plate, the middle gray in the macbeth chart will equal to exposure value 0. EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

     

    To switch Foundry’s Nuke’s SpotMeter to return the EV of an image, click on the main viewport, and then press s, this opens the viewer’s properties. Now set the center f-stop to 0 in there. And the SpotMeter in the viewport will change from aperture and fstops to EV.

     

    If you are trying to gauge the EV from the pixel luminance in the image:
    – Setting the center f-stop to 0 means that in a neutral plate, the middle 18% gray will equal to exposure value 0.
    – So if EV 0 = 0.18 middle gray in nuke which equal to a pixel luminance of 0.18, doubling that value, doubles the EV.

    .18 pixel luminance = 0EV
    .36 pixel luminance = 1EV
    .72 pixel luminance = 2EV
    1.46 pixel luminance = 3EV
    ...
    

     

    This is a Geometric Progression function: xn = ar(n-1)

    The most basic example of this function is 1,2,4,8,16,32,… The sequence starts at 1 and doubles each time, so

    • a=1 (the first term)
    • r=2 (the “common ratio” between terms is a doubling)

    And we get:

    {a, ar, ar2, ar3, … }

    = {1, 1×2, 1×22, 1×23, … }

    = {1, 2, 4, 8, … }

    In this example the function translates to: n = 2(n-1)
    You can graph this curve through this expression: x = 2(y-1)  :

    You can go back and forth between the two values through a geometric progression function and a log function:

    (Note: in a spreadsheet this is: = POWER(2; cell# -1)  and  =LOG(cell#, 2)+1) )

    2(y-1) log2(x)+1
    x y
    1 1
    2 2
    4 3
    8 4
    16 5
    32 6
    64 7
    128 8
    256 9
    512 10
    1024 11
    2048 12
    4096 13

     

    Translating this into a geometric progression between an image pixel luminance and EV:

    (more…)

    , ,
    Read more: Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurements
  • Key/Fill ratios and scene composition using false colors

    www.videomaker.com/article/c03/18984-how-to-calculate-contrast-ratios-for-more-professional-lighting-setups

     

     

    To measure the contrast ratio you will need a light meter. The process starts with you measuring the main source of light, or the key light.

     

    Get a reading from the brightest area on the face of your subject. Then, measure the area lit by the secondary light, or fill light. To make sense of what you have just measured you have to understand that the information you have just gathered is in F-stops, a measure of light. With each additional F-stop, for example going one stop from f/1.4 to f/2.0, you create a doubling of light. The reverse is also true; moving one stop from f/8.0 to f/5.6 results in a halving of the light.

     

    Let’s say you grabbed a measurement from your key light of f/8.0. Then, when you measured your fill light area, you get a reading of f/4.0. This will lead you to a contrast ratio of 4:1 because there are two stops between f/4.0 and f/8.0 and each stop doubles the amount of light. In other words, two stops x twice the light per stop = four times as much light at f/8.0 than at f/4.0.

     

    theslantedlens.com/2017/lighting-ratios-photo-video/

     

    Examples in the post

    (more…)

    , , ,
    Read more: Key/Fill ratios and scene composition using false colors