COLOR

LIGHTING

  • Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurements

    Also see: https://www.pixelsham.com/2015/05/16/how-aperture-shutter-speed-and-iso-affect-your-photos/

     

    In photography, exposure value (EV) is a number that represents a combination of a camera’s shutter speed and f-number, such that all combinations that yield the same exposure have the same EV (for any fixed scene luminance).

     

     

    The EV concept was developed in an attempt to simplify choosing among combinations of equivalent camera settings. Although all camera settings with the same EV nominally give the same exposure, they do not necessarily give the same picture. EV is also used to indicate an interval on the photographic exposure scale. 1 EV corresponding to a standard power-of-2 exposure step, commonly referred to as a stop

     

    EV 0 corresponds to an exposure time of 1 sec and a relative aperture of f/1.0. If the EV is known, it can be used to select combinations of exposure time and f-number.

     

    https://www.streetdirectory.com/travel_guide/141307/photography/exposure_value_ev_and_exposure_compensation.html

    Note EV does not equal to photographic exposure. Photographic Exposure is defined as how much light hits the camera’s sensor. It depends on the camera settings mainly aperture and shutter speed. Exposure value (known as EV) is a number that represents the exposure setting of the camera.

     

    Thus, strictly, EV is not a measure of luminance (indirect or reflected exposure) or illuminance (incidental exposure); rather, an EV corresponds to a luminance (or illuminance) for which a camera with a given ISO speed would use the indicated EV to obtain the nominally correct exposure. Nonetheless, it is common practice among photographic equipment manufacturers to express luminance in EV for ISO 100 speed, as when specifying metering range or autofocus sensitivity.

     

    The exposure depends on two things: how much light gets through the lenses to the camera’s sensor and for how long the sensor is exposed. The former is a function of the aperture value while the latter is a function of the shutter speed. Exposure value is a number that represents this potential amount of light that could hit the sensor. It is important to understand that exposure value is a measure of how exposed the sensor is to light and not a measure of how much light actually hits the sensor. The exposure value is independent of how lit the scene is. For example a pair of aperture value and shutter speed represents the same exposure value both if the camera is used during a very bright day or during a dark night.

     

    Each exposure value number represents all the possible shutter and aperture settings that result in the same exposure. Although the exposure value is the same for different combinations of aperture values and shutter speeds the resulting photo can be very different (the aperture controls the depth of field while shutter speed controls how much motion is captured).

    EV 0.0 is defined as the exposure when setting the aperture to f-number 1.0 and the shutter speed to 1 second. All other exposure values are relative to that number. Exposure values are on a base two logarithmic scale. This means that every single step of EV – plus or minus 1 – represents the exposure (actual light that hits the sensor) being halved or doubled.

    https://www.streetdirectory.com/travel_guide/141307/photography/exposure_value_ev_and_exposure_compensation.html

     

    Formula

    https://en.wikipedia.org/wiki/Exposure_value

     

    https://www.scantips.com/lights/math.html

     

    which means   2EV = N² / t

    where

    • N is the relative aperture (f-number) Important: Note that f/stop values must first be squared in most calculations
    • t is the exposure time (shutter speed) in seconds

    EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

    Example: If f/16 and 1/4 second, then this is:

    (N² / t) = (16 × 16 ÷ 1/4) = (16 × 16 × 4) = 1024.

    Log₂(1024) is EV 10. Meaning, 210 = 1024.

     

    Collecting photographic exposure using Light Meters

    https://photo.stackexchange.com/questions/968/how-can-i-correctly-measure-light-using-a-built-in-camera-meter

    The exposure meter in the camera does not know whether the subject itself is bright or not. It simply measures the amount of light that comes in, and makes a guess based on that. The camera will aim for 18% gray, meaning if you take a photo of an entirely white surface, and an entirely black surface you should get two identical images which both are gray (at least in theory)

    https://en.wikipedia.org/wiki/Light_meter

    For reflected-light meters, camera settings are related to ISO speed and subject luminance by the reflected-light exposure equation:

    where

    • N is the relative aperture (f-number)
    • t is the exposure time (“shutter speed”) in seconds
    • L is the average scene luminance
    • S is the ISO arithmetic speed
    • K is the reflected-light meter calibration constant

     

    For incident-light meters, camera settings are related to ISO speed and subject illuminance by the incident-light exposure equation:

    where

    • E is the illuminance (in lux)
    • C is the incident-light meter calibration constant

     

    Two values for K are in common use: 12.5 (Canon, Nikon, and Sekonic) and 14 (Minolta, Kenko, and Pentax); the difference between the two values is approximately 1/6 EV.
    For C a value of 250 is commonly used.

     

    Nonetheless, it is common practice among photographic equipment manufacturers to also express luminance in EV for ISO 100 speed. Using K = 12.5, the relationship between EV at ISO 100 and luminance L is then :

    L = 2(EV-3)

     

    The situation with incident-light meters is more complicated than that for reflected-light meters, because the calibration constant C depends on the sensor type. Illuminance is measured with a flat sensor; a typical value for C is 250 with illuminance in lux. Using C = 250, the relationship between EV at ISO 100 and illuminance E is then :

     

    E = 2.5 * 2(EV)

     

    https://nofilmschool.com/2018/03/want-easier-and-faster-way-calculate-exposure-formula

    Three basic factors go into the exposure formula itself instead: aperture, shutter, and ISO. Plus a light meter calibration constant.

    f-stop²/shutter (in seconds) = lux * ISO/C

     

    If you at least know four of those variables, you’ll be able to calculate the missing value.

    So, say you want to figure out how much light you’re going to need in order to shoot at a certain f-stop. Well, all you do is plug in your values (you should know the f-stop, ISO, and your light meter calibration constant) into the formula below:

    lux = C (f-stop²/shutter (in seconds))/ISO

     

    Exposure Value Calculator:

    https://snapheadshots.com/resources/exposure-and-light-calculator

     

    https://www.scantips.com/lights/exposurecalc.html

     

    https://www.pointsinfocus.com/tools/exposure-settings-ev-calculator/#google_vignette

     

    From that perspective, an exposure stop is a measurement of Exposure and provides a universal linear scale to measure the increase and decrease in light, exposed to the image sensor, due to changes in shutter speed, iso & f-stop.
    +-1 stop is a doubling or halving of the amount of light let in when taking a photo.
    1 EV is just another way to say one stop of exposure change.

     

    One major use of EV (Exposure Value) is just to measure any change of exposure, where one EV implies a change of one stop of exposure. Like when we compensate our picture in the camera.

     

    If the picture comes out too dark, our manual exposure could correct the next one by directly adjusting one of the three exposure controls (f/stop, shutter speed, or ISO). Or if using camera automation, the camera meter is controlling it, but we might apply +1 EV exposure compensation (or +1 EV flash compensation) to make the result goal brighter, as desired. This use of 1 EV is just another way to say one stop of exposure change.

     

    On a perfect day the difference from sampling the sky vs the sun exposure with diffusing spot meters is about 3.2 exposure difference.

     ~15.4 EV for the sun
     ~12.2 EV for the sky
    

    That is as a ballpark. All still influenced by surroundings, accuracy parameters, fov of the sensor…

     

     

     

    EV calculator

    https://www.scantips.com/lights/evchart.html#calc

    http://www.fredparker.com/ultexp1.htm

     

    Exposure value is basically used to indicate an interval on the photographic exposure scale, with a difference of 1 EV corresponding to a standard power-of-2 exposure step, also commonly referred to as a “stop”.

     

    https://contrastly.com/a-guide-to-understanding-exposure-value-ev/

     

    Retrieving photographic exposure from an image

    All you can hope to measure with your camera and some images is the relative reflected luminance. Even if you have the camera settings. https://en.wikipedia.org/wiki/Relative_luminance

     

    If you REALLY want to know the amount of light in absolute radiometric units, you’re going to need to use some kind of absolute light meter or measured light source to calibrate your camera. For references on how to do this, see: Section 2.5 Obtaining Absolute Radiance from http://www.pauldebevec.com/Research/HDR/debevec-siggraph97.pdf

     

    IF you are still trying to gauge relative brightness, the level of the sun in Nuke can vary, but it should be in the thousands. Ie: between 30,000 and 65,0000 rgb value depending on time of the day, season and atmospherics.

     

    The values for a 12 o’clock sun, with the sun sampled at EV 15.5 (shutter 1/30, ISO 100, F22) is 32.000 RGB max values (or 32,000 pixel luminance).
    The thing to keep an eye for is the level of contrast between sunny side/fill side.  The terminator should be quite obvious,  there can be up to 3 stops difference between fill/key in sunny lit objects.

     

    Note: In Foundry’s Nuke, the software will map 18% gray to whatever your center f/stop is set to in the viewer settings (f/8 by default… change that to EV by following the instructions below).
    You can experiment with this by attaching an Exposure node to a Constant set to 0.18, setting your viewer read-out to Spotmeter, and adjusting the stops in the node up and down. You will see that a full stop up or down will give you the respective next value on the aperture scale (f8, f11, f16 etc.).
    One stop doubles or halves the amount or light that hits the filmback/ccd, so everything works in powers of 2.
    So starting with 0.18 in your constant, you will see that raising it by a stop will give you .36 as a floating point number (in linear space), while your f/stop will be f/11 and so on.

    If you set your center stop to 0 (see below) you will get a relative readout in EVs, where EV 0 again equals 18% constant gray.
    Note: make sure to set your Nuke read node to ‘raw data’

     

    In other words. Setting the center f-stop to 0 means that in a neutral plate, the middle gray in the macbeth chart will equal to exposure value 0. EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

     

    To switch Foundry’s Nuke’s SpotMeter to return the EV of an image, click on the main viewport, and then press s, this opens the viewer’s properties. Now set the center f-stop to 0 in there. And the SpotMeter in the viewport will change from aperture and fstops to EV.

     

    If you are trying to gauge the EV from the pixel luminance in the image:
    – Setting the center f-stop to 0 means that in a neutral plate, the middle 18% gray will equal to exposure value 0.
    – So if EV 0 = 0.18 middle gray in nuke which equal to a pixel luminance of 0.18, doubling that value, doubles the EV.

    .18 pixel luminance = 0EV
    .36 pixel luminance = 1EV
    .72 pixel luminance = 2EV
    1.46 pixel luminance = 3EV
    ...
    

     

    This is a Geometric Progression function: xn = ar(n-1)

    The most basic example of this function is 1,2,4,8,16,32,… The sequence starts at 1 and doubles each time, so

    • a=1 (the first term)
    • r=2 (the “common ratio” between terms is a doubling)

    And we get:

    {a, ar, ar2, ar3, … }

    = {1, 1×2, 1×22, 1×23, … }

    = {1, 2, 4, 8, … }

    In this example the function translates to: n = 2(n-1)
    You can graph this curve through this expression: x = 2(y-1)  :

    You can go back and forth between the two values through a geometric progression function and a log function:

    (Note: in a spreadsheet this is: = POWER(2; cell# -1)  and  =LOG(cell#, 2)+1) )

    2(y-1) log2(x)+1
    x y
    1 1
    2 2
    4 3
    8 4
    16 5
    32 6
    64 7
    128 8
    256 9
    512 10
    1024 11
    2048 12
    4096 13

     

    Translating this into a geometric progression between an image pixel luminance and EV:

    (more…)

    , ,
    Read more: Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurements
  • Rec-2020 – TVs new color gamut standard used by Dolby Vision?

    https://www.hdrsoft.com/resources/dri.html#bit-depth

     

    The dynamic range is a ratio between the maximum and minimum values of a physical measurement. Its definition depends on what the dynamic range refers to.

    For a scene: Dynamic range is the ratio between the brightest and darkest parts of the scene.

    For a camera: Dynamic range is the ratio of saturation to noise. More specifically, the ratio of the intensity that just saturates the camera to the intensity that just lifts the camera response one standard deviation above camera noise.

    For a display: Dynamic range is the ratio between the maximum and minimum intensities emitted from the screen.

     

    The Dynamic Range of real-world scenes can be quite high — ratios of 100,000:1 are common in the natural world. An HDR (High Dynamic Range) image stores pixel values that span the whole tonal range of real-world scenes. Therefore, an HDR image is encoded in a format that allows the largest range of values, e.g. floating-point values stored with 32 bits per color channel. Another characteristics of an HDR image is that it stores linear values. This means that the value of a pixel from an HDR image is proportional to the amount of light measured by the camera.

     

    For TVs HDR is great, but it’s not the only new TV feature worth discussing.

     

    Wide color gamut, or WCG, is often lumped in with HDR. While they’re often found together, they’re not intrinsically linked. Where HDR is an increase in the dynamic range of the picture (with contrast and brighter highlights in particular), a TV’s wide color gamut coverage refers to how much of the new, larger color gamuts a TV can display.

     

    Wide color gamuts only really matter for HDR video sources like UHD Blu-rays and some streaming video, as only HDR sources are meant to take advantage of the ability to display more colors.

     

     

    www.cnet.com/how-to/what-is-wide-color-gamut-wcg/

     

    Color depth is only one aspect of color representation, expressing the precision with which the amount of each primary can be expressed through a pixel; the other aspect is how broad a range of colors can be expressed (the gamut)

     

    Image rendering bit depth

     

    Wide color gamuts include a greater number of colors than what most current TVs can display, so the greater a TV’s coverage of a wide color gamut, the more colors a TV will be able to reproduce.

     

    When we talk about a color space or color gamut we refer to the range of color values stored in an image. The perception of these color also requires a display that has been tuned with to resolve these color profiles at best. This is often referred to as a ‘viewer lut’.

     

    So this comes also usually paired with an increase in bit depth, going from the old 8 bit system (256 shades per color, with the potential of over 16.7 million colors: 256 green x 256 blue x 256 red) to 10  (1024+ shades per color, with access to over a billion colors) or higher bits, like 12 bit (4096 shades per RGB for 68 billion colors).

    The advantage of higher bit depth is in the ability to bias color with the minimum loss.

    https://photo.stackexchange.com/questions/72116/whats-the-point-of-capturing-14-bit-images-and-editing-on-8-bit-monitors

     

    For an extreme example, raising the brightness from a completely dark image allows for better reproduction, independently on the reproduction medium, due to the amount of data available at editing time:

     

    https://www.cambridgeincolour.com/tutorials/dynamic-range.htm

     

    https://www.hdrsoft.com/resources/dri.html#bit-depth

     

    Note that the number of bits itself may be a misleading indication of the real dynamic range that the image reproduces — converting a Low Dynamic Range image to a higher bit depth does not change its dynamic range, of course.

    • 8-bit images (i.e. 24 bits per pixel for a color image) are considered Low Dynamic Range.
    • 16-bit images (i.e. 48 bits per pixel for a color image) resulting from RAW conversion are still considered Low Dynamic Range, even though the range of values they can encode is significantly higher than for 8-bit images (65536 versus 256). Note that converting a RAW file involves applying a tonal curve that compresses the dynamic range of the RAW data so that the converted image shows correctly on low dynamic range monitors. The need to adapt the output image file to the dynamic range of the display is the factor that dictates how much the dynamic range is compressed, not the output bit-depth. By using 16 instead of 8 bits, you will gain precision but you will not gain dynamic range.
    • 32-bit images (i.e. 96 bits per pixel for a color image) are considered High Dynamic Range.Unlike 8- and 16-bit images which can take a finite number of values, 32-bit images are coded using floating point numbers, which means the values they can take is unlimited.It is important to note, though, that storing an image in a 32-bit HDR format is a necessary condition for an HDR image but not a sufficient one. When an image comes from a single capture with a standard camera, it will remain a Low Dynamic Range image,

     

     

    Also note that bit depth and dynamic range are often confused as one, but are indeed separate concepts and there is no direct one to one relationship between them. Bit depth is about capacity, dynamic range is about the actual ratio of data stored.
    The bit depth of a capturing or displaying device gives you an indication of its dynamic range capacity. That is, the highest dynamic range that the device would be capable of reproducing if all other constraints are eliminated.

     

    https://rawpedia.rawtherapee.com/Bit_Depth

     

    Finally, note that there are two ways to “count” bits for an image — either the number of bits per color channel (BPC) or the number of bits per pixel (BPP). A bit (0,1) is the smallest unit of data stored in a computer.

    For a grayscale image, 8-bit means that each pixel can be one of 256 levels of gray (256 is 2 to the power 8).

    For an RGB color image, 8-bit means that each one of the three color channels can be one of 256 levels of color.
    Since each pixel is represented by 3 colors in this case, 8-bit per color channel actually means 24-bit per pixel.

    Similarly, 16-bit for an RGB image means 65,536 levels per color channel and 48-bit per pixel.

    To complicate matters, when an image is classified as 16-bit, it just means that it can store a maximum 65,535 values. It does not necessarily mean that it actually spans that range. If the camera sensors can not capture more than 12 bits of tonal values, the actual bit depth of the image will be at best 12-bit and probably less because of noise.

    The following table attempts to summarize the above for the case of an RGB color image.

     

     

    Type of digital supportBit depth per color channelBit depth per pixelFStopsTheoretical maximum Dynamic RangeReality
    8-bit8248256:1most consumer images
    12-bit CCD1236124,096:1real maximum limited by noise
    14-bit CCD14421416,384:1real maximum limited by noise
    16-bit TIFF (integer)16481665,536:1bit-depth in this case is not directly related to the dynamic range captured
    16-bit float EXR16483065,536:1values are distributed more closely in the (lower) darker tones than in the (higher) lighter ones, thus allowing for a more accurate description of the tones more significant to humans. The range of normalized 16-bit floats can represent thirty stops of information with 1024 steps per stop. We have eighteen and a half stops over middle gray, and eleven and a half below. The denormalized numbers provide an additional ten stops with decreasing precision per stop.
    http://download.nvidia.com/developer/GPU_Gems/CD_Image/Image_Processing/OpenEXR/OpenEXR-1.0.6/doc/#recs
    HDR image (e.g. Radiance format)3296“infinite”4.3 billion:1real maximum limited by the captured dynamic range

    32-bit floats are often called “single-precision” floats, and 64-bit floats are often called “double-precision” floats. 16-bit floats therefore are called “half-precision” floats, or just “half floats”.

     

    https://petapixel.com/2018/09/19/8-12-14-vs-16-bit-depth-what-do-you-really-need

    On a separate note, even Photoshop does not handle 16bit per channel. Photoshop does actually use 16-bits per channel. However, it treats the 16th digit differently – it is simply added to the value created from the first 15-digits. This is sometimes called 15+1 bits. This means that instead of 216 possible values (which would be 65,536 possible values) there are only 215+1 possible values (which is 32,768 +1 = 32,769 possible values).

     

    Rec-601 (for the older SDTV format, very similar to rec-709) and Rec-709 (the HDTV’s recommended set of color standards, at times also referred to sRGB, although not exactly the same) are currently the most spread color formats and hardware configurations in the world.

     

    Following those you can find the larger P3 gamut, more commonly used in theaters and in digital production houses (with small variations and improvements to color coverage), as well as most of best 4K/WCG TVs.

     

    And a new standard is now promoted against P3, referred to Rec-2020 and UHDTV.

     

    It is still debatable if this is going to be adopted at consumer level beyond the P3, mainly due to lack of hardware supporting it. But initial tests do prove that it would be a future proof investment.

    www.colour-science.org/anders-langlands/

     

    Rec. 2020 is ultimately designed for television, and not cinema. Therefore, it is to be expected that its properties must behave according to current signal processing standards. In this respect, its foundation is based on current HD and SD video signal characteristics.

     

    As far as color bit depth is concerned, it allows for a maximum of 12 bits, which is more than enough for humans.

    Comparing standards, REC-709 covers 35.9% of the human visible spectrum. P3 45.5%. And REC-2020 75.8%.
    https://www.avsforum.com/forum/166-lcd-flat-panel-displays/2812161-what-color-volume.html

     

    Comparing coverage to hardware devices

     

    To note that all the new standards generally score very high on the Pointer’s Gamut chart. But with REC-2020 scoring 99.9% vs P3 at 88.2%.
    www.tftcentral.co.uk/articles/pointers_gamut.htm

    https://www.slideshare.net/hpduiker/acescg-a-common-color-encoding-for-visual-effects-applications

     

    The Pointer’s gamut is (an approximation of) the gamut of real surface colors as can be seen by the human eye, based on the research by Michael R. Pointer (1980). What this means is that every color that can be reflected by the surface of an object of any material is inside the Pointer’s gamut. Basically establishing a widely respected target for color reproduction. Visually, Pointers Gamut represents the colors we see about us in the natural world. Colors outside Pointers Gamut include those that do not occur naturally, such as neon lights and computer-generated colors possible in animation. Which would partially be accounted for with the new gamuts.

    cinepedia.com/picture/color-gamut/

     

    Not all current TVs can support the full spread of the new gamuts. Here is a list of modern TVs’ color coverage in percentage:
    www.rtings.com/tv/tests/picture-quality/wide-color-gamut-rec-709-dci-p3-rec-2020

     

    There are no TVs that can come close to displaying all the colors within Rec.2020, and there likely won’t be for at least a few years. However, to help future-proof the technology, Rec.2020 support is already baked into the HDR spec. That means that the same genuine HDR media that fills the DCI P3 space on a compatible TV now, will in a few years also fill Rec.2020 on a TV supporting that larger space.

     

    Rec.2020’s main gains are in the number of new tones of green that it will display, though it also offers improvements to the number of blue and red colors as well. Altogether, Rec.2020 will cover about 75% of the visual spectrum, which is a sizeable increase in coverage even over DCI P3.

     

     

    Dolby Vision

    https://www.highdefdigest.com/news/show/what-is-dolby-vision/39049

    https://www.techhive.com/article/3237232/dolby-vision-vs-hdr10-which-is-best.html

     

    Dolby Vision is a proprietary end-to-end High Dynamic Range (HDR) format that covers content creation and playback through select cinemas, Ultra HD displays, and 4K titles. Like other HDR standards, the process uses expanded brightness to improve contrast between dark and light aspects of an image, bringing out deeper black levels and more realistic details in specular highlights — like the sun reflecting off of an ocean — in specially graded Dolby Vision material.

     

    The iPhone 12 Pro gets the ability to record 4K 10-bit HDR video. According to Apple, it is the very first smartphone that is capable of capturing Dolby Vision HDR.

    The iPhone 12 Pro takes two separate exposures and runs them through Apple’s custom image signal processor to create a histogram, which is a graph of the tonal values in each frame. The Dolby Vision metadata is then generated based on that histogram. In Laymen’s terms, it is essentially doing real-time grading while you are shooting. This is only possible due to the A14 Bionic chip.

     

    Dolby Vision also allows for 12-bit color, as opposed to HDR10’s and HDR10+’s 10-bit color. While no retail TV we’re aware of supports 12-bit color, Dolby claims it can be down-sampled in such a way as to render 10-bit color more accurately.

     

     

     

     

     

    Resources for more reading:

    https://www.avsforum.com/forum/166-lcd-flat-panel-displays/2812161-what-color-volume.html

     

    wolfcrow.com/say-hello-to-rec-2020-the-color-space-of-the-future/

     

    www.cnet.com/news/ultra-hd-tv-color-part-ii-the-future/

     

    , , , ,
    Read more: Rec-2020 – TVs new color gamut standard used by Dolby Vision?
  • IES Light Profiles and editing software

    http://www.derekjenson.com/3d-blog/ies-light-profiles

     

    https://ieslibrary.com/en/browse#ies

     

    https://leomoon.com/store/shaders/ies-lights-pack

     

    https://docs.arnoldrenderer.com/display/a5afmug/ai+photometric+light

     

    IES profiles are useful for creating life-like lighting, as they can represent the physical distribution of light from any light source.

    The IES format was created by the Illumination Engineering Society, and most lighting manufacturers provide IES profile for the lights they manufacture.

     

     

    Arnold file

     

    https://www.real-ies.com/

    ,
    Read more: IES Light Profiles and editing software

Collections
| Explore posts
| Design And Composition
| Featured AI

Popular Searches
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke




Subscribe to PixelSham.com RSS for free
Subscribe to PixelSham.com RSS for free