COLOR

  • What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?

    https://www.discovery.com/science/mexapixels-in-human-eye

    About 576 megapixels for the entire field of view.

     

    Consider a view in front of you that is 90 degrees by 90 degrees, like looking through an open window at a scene. The number of pixels would be:
    90 degrees * 60 arc-minutes/degree * 1/0.3 * 90 * 60 * 1/0.3 = 324,000,000 pixels (324 megapixels).

     

    At any one moment, you actually do not perceive that many pixels, but your eye moves around the scene to see all the detail you want. But the human eye really sees a larger field of view, close to 180 degrees. Let’s be conservative and use 120 degrees for the field of view. Then we would see:

    120 * 120 * 60 * 60 / (0.3 * 0.3) = 576 megapixels.

    Or.

    7 megapixels for the 2 degree focus arc… + 1 megapixel for the rest.

    https://clarkvision.com/articles/eye-resolution.html

     

    Details in the post

    (more…)

    , ,
    Read more: What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?
  • Gamma correction

    http://www.normankoren.com/makingfineprints1A.html#Gammabox

     

    https://en.wikipedia.org/wiki/Gamma_correction

     

    http://www.photoscientia.co.uk/Gamma.htm

     

    https://www.w3.org/Graphics/Color/sRGB.html

     

    http://www.eizoglobal.com/library/basics/lcd_display_gamma/index.html

     

    https://forum.reallusion.com/PrintTopic308094.aspx

     

    Basically, gamma is the relationship between the brightness of a pixel as it appears on the screen, and the numerical value of that pixel. Generally Gamma is just about defining relationships.

    Three main types:
    – Image Gamma encoded in images
    – Display Gammas encoded in hardware and/or viewing time
    – System or Viewing Gamma which is the net effect of all gammas when you look back at a final image. In theory this should flatten back to 1.0 gamma.

     

    Our eyes, different camera or video recorder devices do not correctly capture luminance. (they are not linear)
    Different display devices (monitor, phone screen, TV) do not display luminance correctly neither. So, one needs to correct them, therefore the gamma correction function.

    The human perception of brightness, under common illumination conditions (not pitch black nor blindingly bright), follows an approximate power function (note: no relation to the gamma function), with greater sensitivity to relative differences between darker tones than between lighter ones, consistent with the Stevens’ power law for brightness perception. If images are not gamma-encoded, they allocate too many bits or too much bandwidth to highlights that humans cannot differentiate, and too few bits or too little bandwidth to shadow values that humans are sensitive to and would require more bits/bandwidth to maintain the same visual quality.

    https://blog.amerlux.com/4-things-architects-should-know-about-lumens-vs-perceived-brightness/

    cones manage color receptivity, rods determine how large our pupils should be. The larger (more dilated) our pupils are, the more light enters our eyes. In dark situations, our rods dilate our pupils so we can see better. This impacts how we perceive brightness.

     

    https://www.cambridgeincolour.com/tutorials/gamma-correction.htm

    A gamma encoded image has to have “gamma correction” applied when it is viewed — which effectively converts it back into light from the original scene. In other words, the purpose of gamma encoding is for recording the image — not for displaying the image. Fortunately this second step (the “display gamma”) is automatically performed by your monitor and video card. The following diagram illustrates how all of this fits together:

     

    Display gamma
    The display gamma can be a little confusing because this term is often used interchangeably with gamma correction, since it corrects for the file gamma. This is the gamma that you are controlling when you perform monitor calibration and adjust your contrast setting. Fortunately, the industry has converged on a standard display gamma of 2.2, so one doesn’t need to worry about the pros/cons of different values.

     

    Gamma encoding of images is used to optimize the usage of bits when encoding an image, or bandwidth used to transport an image, by taking advantage of the non-linear manner in which humans perceive light and color. Human response to luminance is also biased. Especially sensible to dark areas.
    Thus, the human visual system has a non-linear response to the power of the incoming light, so a fixed increase in power will not have a fixed increase in perceived brightness.
    We perceive a value as half bright when it is actually 18% of the original intensity not 50%. As such, our perception is not linear.

     

    You probably already know that a pixel can have any ‘value’ of Red, Green, and Blue between 0 and 255, and you would therefore think that a pixel value of 127 would appear as half of the maximum possible brightness, and that a value of 64 would represent one-quarter brightness, and so on. Well, that’s just not the case.

     

    Pixar Color Management
    https://renderman.pixar.com/color-management


    – Why do we need linear gamma?
    Because light works linearly and therefore only works properly when it lights linear values.

     

    – Why do we need to view in sRGB?
    Because the resulting linear image in not suitable for viewing, but contains all the proper data. Pixar’s IT viewer can compensate by showing the rendered image through a sRGB look up table (LUT), which is identical to what will be the final image after the sRGB gamma curve is applied in post.

    This would be simple enough if every software would play by the same rules, but they don’t. In fact, the default gamma workflow for many 3D software is incorrect. This is where the knowledge of a proper imaging workflow comes in to save the day.

     

    Cathode-ray tubes have a peculiar relationship between the voltage applied to them, and the amount of light emitted. It isn’t linear, and in fact it follows what’s called by mathematicians and other geeks, a ‘power law’ (a number raised to a power). The numerical value of that power is what we call the gamma of the monitor or system.

     

    Thus. Gamma describes the nonlinear relationship between the pixel levels in your computer and the luminance of your monitor (the light energy it emits) or the reflectance of your prints. The equation is,

    Luminance = C * value^gamma + black level

    – C is set by the monitor Contrast control.

    – Value is the pixel level normalized to a maximum of 1. For an 8 bit monitor with pixel levels 0 – 255, value = (pixel level)/255.

     

    – Black level is set by the (misnamed) monitor Brightness control. The relationship is linear if gamma = 1. The chart illustrates the relationship for gamma = 1, 1.5, 1.8 and 2.2 with C = 1 and black level = 0.

     

    Gamma affects middle tones; it has no effect on black or white. If gamma is set too high, middle tones appear too dark. Conversely, if it’s set too low, middle tones appear too light.

     

    The native gamma of monitors – the relationship between grid voltage and luminance – is typically around 2.5, though it can vary considerably. This is well above any of the display standards, so you must be aware of gamma and correct it.

     

    A display gamma of 2.2 is the de facto standard for the Windows operating system and the Internet-standard sRGB color space.

     

    The old standard for Mcintosh and prepress file interchange is 1.8. It is now 2.2 as well.

     

    Video cameras have gammas of approximately 0.45 – the inverse of 2.2. The viewing or system gamma is the product of the gammas of all the devices in the system – the image acquisition device (film+scanner or digital camera), color lookup table (LUT), and monitor. System gamma is typically between 1.1 and 1.5. Viewing flare and other factor make images look flat at system gamma = 1.0.

     

    Most laptop LCD screens are poorly suited for critical image editing because gamma is extremely sensitive to viewing angle.

     

    More about screens

    https://www.cambridgeincolour.com/tutorials/gamma-correction.htm

    CRT Monitors. Due to an odd bit of engineering luck, the native gamma of a CRT is 2.5 — almost the inverse of our eyes. Values from a gamma-encoded file could therefore be sent straight to the screen and they would automatically be corrected and appear nearly OK. However, a small gamma correction of ~1/1.1 needs to be applied to achieve an overall display gamma of 2.2. This is usually already set by the manufacturer’s default settings, but can also be set during monitor calibration.

    LCD Monitors. LCD monitors weren’t so fortunate; ensuring an overall display gamma of 2.2 often requires substantial corrections, and they are also much less consistent than CRT’s. LCDs therefore require something called a look-up table (LUT) in order to ensure that input values are depicted using the intended display gamma (amongst other things). See the tutorial on monitor calibration: look-up tables for more on this topic.

    About black level (brightness). Your monitor’s brightness control (which should actually be called black level) can be adjusted using the mostly black pattern on the right side of the chart. This pattern contains two dark gray vertical bars, A and B, which increase in luminance with increasing gamma. (If you can’t see them, your black level is way low.) The left bar (A) should be just above the threshold of visibility opposite your chosen gamma (2.2 or 1.8) – it should be invisible where gamma is lower by about 0.3. The right bar (B) should be distinctly visible: brighter than (A), but still very dark. This chart is only for monitors; it doesn’t work on printed media.

     

    The 1.8 and 2.2 gray patterns at the bottom of the image represent a test of monitor quality and calibration. If your monitor is functioning properly and calibrated to gamma = 2.2 or 1.8, the corresponding pattern will appear smooth neutral gray when viewed from a distance. Any waviness, irregularity, or color banding indicates incorrect monitor calibration or poor performance.

     

    Another test to see whether one’s computer monitor is properly hardware adjusted and can display shadow detail in sRGB images properly, they should see the left half of the circle in the large black square very faintly but the right half should be clearly visible. If not, one can adjust their monitor’s contrast and/or brightness setting. This alters the monitor’s perceived gamma. The image is best viewed against a black background.

     

    This procedure is not suitable for calibrating or print-proofing a monitor. It can be useful for making a monitor display sRGB images approximately correctly, on systems in which profiles are not used (for example, the Firefox browser prior to version 3.0 and many others) or in systems that assume untagged source images are in the sRGB colorspace.

     

    On some operating systems running the X Window System, one can set the gamma correction factor (applied to the existing gamma value) by issuing the command xgamma -gamma 0.9 for setting gamma correction factor to 0.9, and xgamma for querying current value of that factor (the default is 1.0). In OS X systems, the gamma and other related screen calibrations are made through the System Preference

     

    https://www.kinematicsoup.com/news/2016/6/15/gamma-and-linear-space-what-they-are-how-they-differ

    Linear color space means that numerical intensity values correspond proportionally to their perceived intensity. This means that the colors can be added and multiplied correctly. A color space without that property is called ”non-linear”. Below is an example where an intensity value is doubled in a linear and a non-linear color space. While the corresponding numerical values in linear space are correct, in the non-linear space (gamma = 0.45, more on this later) we can’t simply double the value to get the correct intensity.

     

    The need for gamma arises for two main reasons: The first is that screens have been built with a non-linear response to intensity. The other is that the human eye can tell the difference between darker shades better than lighter shades. This means that when images are compressed to save space, we want to have greater accuracy for dark intensities at the expense of lighter intensities. Both of these problems are resolved using gamma correction, which is to say the intensity of every pixel in an image is put through a power function. Specifically, gamma is the name given to the power applied to the image.

     

    CRT screens, simply by how they work, apply a gamma of around 2.2, and modern LCD screens are designed to mimic that behavior. A gamma of 2.2, the reciprocal of 0.45, when applied to the brightened images will darken them, leaving the original image.

    , , , ,
    Read more: Gamma correction
  • Tim Kang – calibrated white light values in sRGB color space

    https://www.linkedin.com/posts/timkang_colorimetry-cinematography-nerdalert-activity-7058330978007584769-9xln

     

    8bit sRGB encoded
    2000K 255 139 22
    2700K 255 172 89
    3000K 255 184 109
    3200K 255 190 122
    4000K 255 211 165
    4300K 255 219 178
    D50 255 235 205
    D55 255 243 224
    D5600 255 244 227
    D6000 255 249 240
    D65 255 255 255
    D10000 202 221 255
    D20000 166 196 255

    8bit Rec709 Gamma 2.4
    2000K 255 145 34
    2700K 255 177 97
    3000K 255 187 117
    3200K 255 193 129
    4000K 255 214 170
    4300K 255 221 182
    D50 255 236 208
    D55 255 243 226
    D5600 255 245 229
    D6000 255 250 241
    D65 255 255 255
    D10000 204 222 255
    D20000 170 199 255

    8bit Display P3 encoded
    2000K 255 154 63
    2700K 255 185 109
    3000K 255 195 127
    3200K 255 201 138
    4000K 255 219 176
    4300K 255 225 187
    D50 255 239 212
    D55 255 245 228
    D5600 255 246 231
    D6000 255 251 242
    D65 255 255 255
    D10000 208 223 255
    D20000 175 199 255

    10bit Rec2020 PQ (100 nits)
    2000K 520 435 273
    2700K 520 466 358
    3000K 520 475 384
    3200K 520 480 399
    4000K 520 495 446
    4300K 520 500 458
    D50 520 510 482
    D55 520 514 497
    D5600 520 514 500
    D6000 520 517 509
    D65 520 520 520
    D10000 479 489 520
    D20000 448 464 520

     

    ,
    Read more: Tim Kang – calibrated white light values in sRGB color space

LIGHTING

  • Rec-2020 – TVs new color gamut standard used by Dolby Vision?

    https://www.hdrsoft.com/resources/dri.html#bit-depth

     

    The dynamic range is a ratio between the maximum and minimum values of a physical measurement. Its definition depends on what the dynamic range refers to.

    For a scene: Dynamic range is the ratio between the brightest and darkest parts of the scene.

    For a camera: Dynamic range is the ratio of saturation to noise. More specifically, the ratio of the intensity that just saturates the camera to the intensity that just lifts the camera response one standard deviation above camera noise.

    For a display: Dynamic range is the ratio between the maximum and minimum intensities emitted from the screen.

     

    The Dynamic Range of real-world scenes can be quite high — ratios of 100,000:1 are common in the natural world. An HDR (High Dynamic Range) image stores pixel values that span the whole tonal range of real-world scenes. Therefore, an HDR image is encoded in a format that allows the largest range of values, e.g. floating-point values stored with 32 bits per color channel. Another characteristics of an HDR image is that it stores linear values. This means that the value of a pixel from an HDR image is proportional to the amount of light measured by the camera.

     

    For TVs HDR is great, but it’s not the only new TV feature worth discussing.

     

    Wide color gamut, or WCG, is often lumped in with HDR. While they’re often found together, they’re not intrinsically linked. Where HDR is an increase in the dynamic range of the picture (with contrast and brighter highlights in particular), a TV’s wide color gamut coverage refers to how much of the new, larger color gamuts a TV can display.

     

    Wide color gamuts only really matter for HDR video sources like UHD Blu-rays and some streaming video, as only HDR sources are meant to take advantage of the ability to display more colors.

     

     

    www.cnet.com/how-to/what-is-wide-color-gamut-wcg/

     

    Color depth is only one aspect of color representation, expressing the precision with which the amount of each primary can be expressed through a pixel; the other aspect is how broad a range of colors can be expressed (the gamut)

     

    Image rendering bit depth

     

    Wide color gamuts include a greater number of colors than what most current TVs can display, so the greater a TV’s coverage of a wide color gamut, the more colors a TV will be able to reproduce.

     

    When we talk about a color space or color gamut we refer to the range of color values stored in an image. The perception of these color also requires a display that has been tuned with to resolve these color profiles at best. This is often referred to as a ‘viewer lut’.

     

    So this comes also usually paired with an increase in bit depth, going from the old 8 bit system (256 shades per color, with the potential of over 16.7 million colors: 256 green x 256 blue x 256 red) to 10  (1024+ shades per color, with access to over a billion colors) or higher bits, like 12 bit (4096 shades per RGB for 68 billion colors).

    The advantage of higher bit depth is in the ability to bias color with the minimum loss.

    https://photo.stackexchange.com/questions/72116/whats-the-point-of-capturing-14-bit-images-and-editing-on-8-bit-monitors

     

    For an extreme example, raising the brightness from a completely dark image allows for better reproduction, independently on the reproduction medium, due to the amount of data available at editing time:

     

    https://www.cambridgeincolour.com/tutorials/dynamic-range.htm

     

    https://www.hdrsoft.com/resources/dri.html#bit-depth

     

    Note that the number of bits itself may be a misleading indication of the real dynamic range that the image reproduces — converting a Low Dynamic Range image to a higher bit depth does not change its dynamic range, of course.

    • 8-bit images (i.e. 24 bits per pixel for a color image) are considered Low Dynamic Range.
    • 16-bit images (i.e. 48 bits per pixel for a color image) resulting from RAW conversion are still considered Low Dynamic Range, even though the range of values they can encode is significantly higher than for 8-bit images (65536 versus 256). Note that converting a RAW file involves applying a tonal curve that compresses the dynamic range of the RAW data so that the converted image shows correctly on low dynamic range monitors. The need to adapt the output image file to the dynamic range of the display is the factor that dictates how much the dynamic range is compressed, not the output bit-depth. By using 16 instead of 8 bits, you will gain precision but you will not gain dynamic range.
    • 32-bit images (i.e. 96 bits per pixel for a color image) are considered High Dynamic Range.Unlike 8- and 16-bit images which can take a finite number of values, 32-bit images are coded using floating point numbers, which means the values they can take is unlimited.It is important to note, though, that storing an image in a 32-bit HDR format is a necessary condition for an HDR image but not a sufficient one. When an image comes from a single capture with a standard camera, it will remain a Low Dynamic Range image,

     

     

    Also note that bit depth and dynamic range are often confused as one, but are indeed separate concepts and there is no direct one to one relationship between them. Bit depth is about capacity, dynamic range is about the actual ratio of data stored.
    The bit depth of a capturing or displaying device gives you an indication of its dynamic range capacity. That is, the highest dynamic range that the device would be capable of reproducing if all other constraints are eliminated.

     

    https://rawpedia.rawtherapee.com/Bit_Depth

     

    Finally, note that there are two ways to “count” bits for an image — either the number of bits per color channel (BPC) or the number of bits per pixel (BPP). A bit (0,1) is the smallest unit of data stored in a computer.

    For a grayscale image, 8-bit means that each pixel can be one of 256 levels of gray (256 is 2 to the power 8).

    For an RGB color image, 8-bit means that each one of the three color channels can be one of 256 levels of color.
    Since each pixel is represented by 3 colors in this case, 8-bit per color channel actually means 24-bit per pixel.

    Similarly, 16-bit for an RGB image means 65,536 levels per color channel and 48-bit per pixel.

    To complicate matters, when an image is classified as 16-bit, it just means that it can store a maximum 65,535 values. It does not necessarily mean that it actually spans that range. If the camera sensors can not capture more than 12 bits of tonal values, the actual bit depth of the image will be at best 12-bit and probably less because of noise.

    The following table attempts to summarize the above for the case of an RGB color image.

     

     

    Type of digital supportBit depth per color channelBit depth per pixelFStopsTheoretical maximum Dynamic RangeReality
    8-bit8248256:1most consumer images
    12-bit CCD1236124,096:1real maximum limited by noise
    14-bit CCD14421416,384:1real maximum limited by noise
    16-bit TIFF (integer)16481665,536:1bit-depth in this case is not directly related to the dynamic range captured
    16-bit float EXR16483065,536:1values are distributed more closely in the (lower) darker tones than in the (higher) lighter ones, thus allowing for a more accurate description of the tones more significant to humans. The range of normalized 16-bit floats can represent thirty stops of information with 1024 steps per stop. We have eighteen and a half stops over middle gray, and eleven and a half below. The denormalized numbers provide an additional ten stops with decreasing precision per stop.
    http://download.nvidia.com/developer/GPU_Gems/CD_Image/Image_Processing/OpenEXR/OpenEXR-1.0.6/doc/#recs
    HDR image (e.g. Radiance format)3296“infinite”4.3 billion:1real maximum limited by the captured dynamic range

    32-bit floats are often called “single-precision” floats, and 64-bit floats are often called “double-precision” floats. 16-bit floats therefore are called “half-precision” floats, or just “half floats”.

     

    https://petapixel.com/2018/09/19/8-12-14-vs-16-bit-depth-what-do-you-really-need

    On a separate note, even Photoshop does not handle 16bit per channel. Photoshop does actually use 16-bits per channel. However, it treats the 16th digit differently – it is simply added to the value created from the first 15-digits. This is sometimes called 15+1 bits. This means that instead of 216 possible values (which would be 65,536 possible values) there are only 215+1 possible values (which is 32,768 +1 = 32,769 possible values).

     

    Rec-601 (for the older SDTV format, very similar to rec-709) and Rec-709 (the HDTV’s recommended set of color standards, at times also referred to sRGB, although not exactly the same) are currently the most spread color formats and hardware configurations in the world.

     

    Following those you can find the larger P3 gamut, more commonly used in theaters and in digital production houses (with small variations and improvements to color coverage), as well as most of best 4K/WCG TVs.

     

    And a new standard is now promoted against P3, referred to Rec-2020 and UHDTV.

     

    It is still debatable if this is going to be adopted at consumer level beyond the P3, mainly due to lack of hardware supporting it. But initial tests do prove that it would be a future proof investment.

    www.colour-science.org/anders-langlands/

     

    Rec. 2020 is ultimately designed for television, and not cinema. Therefore, it is to be expected that its properties must behave according to current signal processing standards. In this respect, its foundation is based on current HD and SD video signal characteristics.

     

    As far as color bit depth is concerned, it allows for a maximum of 12 bits, which is more than enough for humans.

    Comparing standards, REC-709 covers 35.9% of the human visible spectrum. P3 45.5%. And REC-2020 75.8%.
    https://www.avsforum.com/forum/166-lcd-flat-panel-displays/2812161-what-color-volume.html

     

    Comparing coverage to hardware devices

     

    To note that all the new standards generally score very high on the Pointer’s Gamut chart. But with REC-2020 scoring 99.9% vs P3 at 88.2%.
    www.tftcentral.co.uk/articles/pointers_gamut.htm

    https://www.slideshare.net/hpduiker/acescg-a-common-color-encoding-for-visual-effects-applications

     

    The Pointer’s gamut is (an approximation of) the gamut of real surface colors as can be seen by the human eye, based on the research by Michael R. Pointer (1980). What this means is that every color that can be reflected by the surface of an object of any material is inside the Pointer’s gamut. Basically establishing a widely respected target for color reproduction. Visually, Pointers Gamut represents the colors we see about us in the natural world. Colors outside Pointers Gamut include those that do not occur naturally, such as neon lights and computer-generated colors possible in animation. Which would partially be accounted for with the new gamuts.

    cinepedia.com/picture/color-gamut/

     

    Not all current TVs can support the full spread of the new gamuts. Here is a list of modern TVs’ color coverage in percentage:
    www.rtings.com/tv/tests/picture-quality/wide-color-gamut-rec-709-dci-p3-rec-2020

     

    There are no TVs that can come close to displaying all the colors within Rec.2020, and there likely won’t be for at least a few years. However, to help future-proof the technology, Rec.2020 support is already baked into the HDR spec. That means that the same genuine HDR media that fills the DCI P3 space on a compatible TV now, will in a few years also fill Rec.2020 on a TV supporting that larger space.

     

    Rec.2020’s main gains are in the number of new tones of green that it will display, though it also offers improvements to the number of blue and red colors as well. Altogether, Rec.2020 will cover about 75% of the visual spectrum, which is a sizeable increase in coverage even over DCI P3.

     

     

    Dolby Vision

    https://www.highdefdigest.com/news/show/what-is-dolby-vision/39049

    https://www.techhive.com/article/3237232/dolby-vision-vs-hdr10-which-is-best.html

     

    Dolby Vision is a proprietary end-to-end High Dynamic Range (HDR) format that covers content creation and playback through select cinemas, Ultra HD displays, and 4K titles. Like other HDR standards, the process uses expanded brightness to improve contrast between dark and light aspects of an image, bringing out deeper black levels and more realistic details in specular highlights — like the sun reflecting off of an ocean — in specially graded Dolby Vision material.

     

    The iPhone 12 Pro gets the ability to record 4K 10-bit HDR video. According to Apple, it is the very first smartphone that is capable of capturing Dolby Vision HDR.

    The iPhone 12 Pro takes two separate exposures and runs them through Apple’s custom image signal processor to create a histogram, which is a graph of the tonal values in each frame. The Dolby Vision metadata is then generated based on that histogram. In Laymen’s terms, it is essentially doing real-time grading while you are shooting. This is only possible due to the A14 Bionic chip.

     

    Dolby Vision also allows for 12-bit color, as opposed to HDR10’s and HDR10+’s 10-bit color. While no retail TV we’re aware of supports 12-bit color, Dolby claims it can be down-sampled in such a way as to render 10-bit color more accurately.

     

     

     

     

     

    Resources for more reading:

    https://www.avsforum.com/forum/166-lcd-flat-panel-displays/2812161-what-color-volume.html

     

    wolfcrow.com/say-hello-to-rec-2020-the-color-space-of-the-future/

     

    www.cnet.com/news/ultra-hd-tv-color-part-ii-the-future/

     

    , , , ,
    Read more: Rec-2020 – TVs new color gamut standard used by Dolby Vision?
  • About green screens

    hackaday.com/2015/02/07/how-green-screen-worked-before-computers/

     

    www.newtek.com/blog/tips/best-green-screen-materials/

     

    www.chromawall.com/blog//chroma-key-green

     

     

    Chroma Key Green, the color of green screens is also known as Chroma Green and is valued at approximately 354C in the Pantone color matching system (PMS).

     

    Chroma Green can be broken down in many different ways. Here is green screen green as other values useful for both physical and digital production:

     

    Green Screen as RGB Color Value: 0, 177, 64
    Green Screen as CMYK Color Value: 81, 0, 92, 0
    Green Screen as Hex Color Value: #00b140
    Green Screen as Websafe Color Value: #009933

     

    Chroma Key Green is reasonably close to an 18% gray reflectance.

     

    Illuminate your green screen with an uniform source with less than 2/3 EV variation.
    The level of brightness at any given f-stop should be equivalent to a 90% white card under the same lighting.

    , ,
    Read more: About green screens
  • Rendering – BRDF – Bidirectional reflectance distribution function

    http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function

    The bidirectional reflectance distribution function is a four-dimensional function that defines how light is reflected at an opaque surface

    http://www.cs.ucla.edu/~zhu/tutorial/An_Introduction_to_BRDF-Based_Lighting.pdf

    In general, when light interacts with matter, a complicated light-matter dynamic occurs. This interaction depends on the physical characteristics of the light as well as the physical composition and characteristics of the matter.

    That is, some of the incident light is reflected, some of the light is transmitted, and another portion of the light is absorbed by the medium itself.

    A BRDF describes how much light is reflected when light makes contact with a certain material. Similarly, a BTDF (Bi-directional Transmission Distribution Function) describes how much light is transmitted when light makes contact with a certain material

    http://www.cs.princeton.edu/~smr/cs348c-97/surveypaper.html

    It is difficult to establish exactly how far one should go in elaborating the surface model. A truly complete representation of the reflective behavior of a surface might take into account such phenomena as polarization, scattering, fluorescence, and phosphorescence, all of which might vary with position on the surface. Therefore, the variables in this complete function would be:

    incoming and outgoing angle incoming and outgoing wavelength incoming and outgoing polarization (both linear and circular) incoming and outgoing position (which might differ due to subsurface scattering) time delay between the incoming and outgoing light ray

    ,
    Read more: Rendering – BRDF – Bidirectional reflectance distribution function
  • DiffusionLight: HDRI Light Probes for Free by Painting a Chrome Ball

    https://diffusionlight.github.io/

     

     

    https://github.com/DiffusionLight/DiffusionLight

     

    https://github.com/DiffusionLight/DiffusionLight?tab=MIT-1-ov-file#readme

     

    https://colab.research.google.com/drive/15pC4qb9mEtRYsW3utXkk-jnaeVxUy-0S

     

    “a simple yet effective technique to estimate lighting in a single input image. Current techniques rely heavily on HDR panorama datasets to train neural networks to regress an input with limited field-of-view to a full environment map. However, these approaches often struggle with real-world, uncontrolled settings due to the limited diversity and size of their datasets. To address this problem, we leverage diffusion models trained on billions of standard images to render a chrome ball into the input image. Despite its simplicity, this task remains challenging: the diffusion models often insert incorrect or inconsistent objects and cannot readily generate images in HDR format. Our research uncovers a surprising relationship between the appearance of chrome balls and the initial diffusion noise map, which we utilize to consistently generate high-quality chrome balls. We further fine-tune an LDR difusion model (Stable Diffusion XL) with LoRA, enabling it to perform exposure bracketing for HDR light estimation. Our method produces convincing light estimates across diverse settings and demonstrates superior generalization to in-the-wild scenarios.”

     

    , ,
    Read more: DiffusionLight: HDRI Light Probes for Free by Painting a Chrome Ball