COLOR

LIGHTING

  • Photography basics: Color Temperature and White Balance

     

     

    Color Temperature of a light source describes the spectrum of light which is radiated from a theoretical “blackbody” (an ideal physical body that absorbs all radiation and incident light – neither reflecting it nor allowing it to pass through) with a given surface temperature.

    https://en.wikipedia.org/wiki/Color_temperature

     

    Or. Most simply it is a method of describing the color characteristics of light through a numerical value that corresponds to the color emitted by a light source, measured in degrees of Kelvin (K) on a scale from 1,000 to 10,000.

     

    More accurately. The color temperature of a light source is the temperature of an ideal backbody that radiates light of comparable hue to that of the light source.

    As such, the color temperature of a light source is a numerical measurement of its color appearance. It is based on the principle that any object will emit light if it is heated to a high enough temperature, and that the color of that light will shift in a predictable manner as the temperature is increased. The system is based on the color changes of a theoretical “blackbody radiator” as it is heated from a cold black to a white hot state.

     

    So, why do we measure the hue of the light as a “temperature”? This was started in the late 1800s, when the British physicist William Kelvin heated a block of carbon. It glowed in the heat, producing a range of different colors at different temperatures. The black cube first produced a dim red light, increasing to a brighter yellow as the temperature went up, and eventually produced a bright blue-white glow at the highest temperatures. In his honor, Color Temperatures are measured in degrees Kelvin, which are a variation on Centigrade degrees. Instead of starting at the temperature water freezes, the Kelvin scale starts at “absolute zero,” which is -273 Centigrade.

     

    More about black bodies here: https://www.pixelsham.com/2013/03/14/black-body-color

     

     

    Details in the post

    (more…)

    , , ,
    Read more: Photography basics: Color Temperature and White Balance
  • Photography basics: Solid Angle measures

    http://www.calculator.org/property.aspx?name=solid+angle

     

     

    A measure of how large the object appears to an observer looking from that point. Thus. A measure for objects in the sky. Useful to retuen the size of the sun and moon… and in perspective, how much of their contribution to lighting. Solid angle can be represented in ‘angular diameter’ as well.

    http://en.wikipedia.org/wiki/Solid_angle

     

    http://www.mathsisfun.com/geometry/steradian.html

     

    A solid angle is expressed in a dimensionless unit called a steradian (symbol: sr). By default in terms of the total celestial sphere and before atmospheric’s scattering, the Sun and the Moon subtend fractional areas of 0.000546% (Sun) and 0.000531% (Moon).

     

    http://en.wikipedia.org/wiki/Solid_angle#Sun_and_Moon

     

    On earth the sun is likely closer to 0.00011 solid angle after athmospheric scattering. The sun as perceived from earth has a diameter of 0.53 degrees. This is about 0.000064 solid angle.

    http://www.numericana.com/answer/angles.htm

     

    The mean angular diameter of the full moon is 2q = 0.52° (it varies with time around that average, by about 0.009°). This translates into a solid angle of 0.0000647 sr, which means that the whole night sky covers a solid angle roughly one hundred thousand times greater than the full moon.

     

    More info

     

    http://lcogt.net/spacebook/using-angles-describe-positions-and-apparent-sizes-objects

    http://amazing-space.stsci.edu/glossary/def.php.s=topic_astronomy

     

    Angular Size

    The apparent size of an object as seen by an observer; expressed in units of degrees (of arc), arc minutes, or arc seconds. The moon, as viewed from the Earth, has an angular diameter of one-half a degree.

     

    The angle covered by the diameter of the full moon is about 31 arcmin or 1/2°, so astronomers would say the Moon’s angular diameter is 31 arcmin, or the Moon subtends an angle of 31 arcmin.

    , ,
    Read more: Photography basics: Solid Angle measures
  • Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurements

    Also see: https://www.pixelsham.com/2015/05/16/how-aperture-shutter-speed-and-iso-affect-your-photos/

     

    In photography, exposure value (EV) is a number that represents a combination of a camera’s shutter speed and f-number, such that all combinations that yield the same exposure have the same EV (for any fixed scene luminance).

     

     

    The EV concept was developed in an attempt to simplify choosing among combinations of equivalent camera settings. Although all camera settings with the same EV nominally give the same exposure, they do not necessarily give the same picture. EV is also used to indicate an interval on the photographic exposure scale. 1 EV corresponding to a standard power-of-2 exposure step, commonly referred to as a stop

     

    EV 0 corresponds to an exposure time of 1 sec and a relative aperture of f/1.0. If the EV is known, it can be used to select combinations of exposure time and f-number.

     

    https://www.streetdirectory.com/travel_guide/141307/photography/exposure_value_ev_and_exposure_compensation.html

    Note EV does not equal to photographic exposure. Photographic Exposure is defined as how much light hits the camera’s sensor. It depends on the camera settings mainly aperture and shutter speed. Exposure value (known as EV) is a number that represents the exposure setting of the camera.

     

    Thus, strictly, EV is not a measure of luminance (indirect or reflected exposure) or illuminance (incidental exposure); rather, an EV corresponds to a luminance (or illuminance) for which a camera with a given ISO speed would use the indicated EV to obtain the nominally correct exposure. Nonetheless, it is common practice among photographic equipment manufacturers to express luminance in EV for ISO 100 speed, as when specifying metering range or autofocus sensitivity.

     

    The exposure depends on two things: how much light gets through the lenses to the camera’s sensor and for how long the sensor is exposed. The former is a function of the aperture value while the latter is a function of the shutter speed. Exposure value is a number that represents this potential amount of light that could hit the sensor. It is important to understand that exposure value is a measure of how exposed the sensor is to light and not a measure of how much light actually hits the sensor. The exposure value is independent of how lit the scene is. For example a pair of aperture value and shutter speed represents the same exposure value both if the camera is used during a very bright day or during a dark night.

     

    Each exposure value number represents all the possible shutter and aperture settings that result in the same exposure. Although the exposure value is the same for different combinations of aperture values and shutter speeds the resulting photo can be very different (the aperture controls the depth of field while shutter speed controls how much motion is captured).

    EV 0.0 is defined as the exposure when setting the aperture to f-number 1.0 and the shutter speed to 1 second. All other exposure values are relative to that number. Exposure values are on a base two logarithmic scale. This means that every single step of EV – plus or minus 1 – represents the exposure (actual light that hits the sensor) being halved or doubled.

    https://www.streetdirectory.com/travel_guide/141307/photography/exposure_value_ev_and_exposure_compensation.html

     

    Formula

    https://en.wikipedia.org/wiki/Exposure_value

     

    https://www.scantips.com/lights/math.html

     

    which means   2EV = N² / t

    where

    • N is the relative aperture (f-number) Important: Note that f/stop values must first be squared in most calculations
    • t is the exposure time (shutter speed) in seconds

    EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

    Example: If f/16 and 1/4 second, then this is:

    (N² / t) = (16 × 16 ÷ 1/4) = (16 × 16 × 4) = 1024.

    Log₂(1024) is EV 10. Meaning, 210 = 1024.

     

    Collecting photographic exposure using Light Meters

    https://photo.stackexchange.com/questions/968/how-can-i-correctly-measure-light-using-a-built-in-camera-meter

    The exposure meter in the camera does not know whether the subject itself is bright or not. It simply measures the amount of light that comes in, and makes a guess based on that. The camera will aim for 18% gray, meaning if you take a photo of an entirely white surface, and an entirely black surface you should get two identical images which both are gray (at least in theory)

    https://en.wikipedia.org/wiki/Light_meter

    For reflected-light meters, camera settings are related to ISO speed and subject luminance by the reflected-light exposure equation:

    where

    • N is the relative aperture (f-number)
    • t is the exposure time (“shutter speed”) in seconds
    • L is the average scene luminance
    • S is the ISO arithmetic speed
    • K is the reflected-light meter calibration constant

     

    For incident-light meters, camera settings are related to ISO speed and subject illuminance by the incident-light exposure equation:

    where

    • E is the illuminance (in lux)
    • C is the incident-light meter calibration constant

     

    Two values for K are in common use: 12.5 (Canon, Nikon, and Sekonic) and 14 (Minolta, Kenko, and Pentax); the difference between the two values is approximately 1/6 EV.
    For C a value of 250 is commonly used.

     

    Nonetheless, it is common practice among photographic equipment manufacturers to also express luminance in EV for ISO 100 speed. Using K = 12.5, the relationship between EV at ISO 100 and luminance L is then :

    L = 2(EV-3)

     

    The situation with incident-light meters is more complicated than that for reflected-light meters, because the calibration constant C depends on the sensor type. Illuminance is measured with a flat sensor; a typical value for C is 250 with illuminance in lux. Using C = 250, the relationship between EV at ISO 100 and illuminance E is then :

     

    E = 2.5 * 2(EV)

     

    https://nofilmschool.com/2018/03/want-easier-and-faster-way-calculate-exposure-formula

    Three basic factors go into the exposure formula itself instead: aperture, shutter, and ISO. Plus a light meter calibration constant.

    f-stop²/shutter (in seconds) = lux * ISO/C

     

    If you at least know four of those variables, you’ll be able to calculate the missing value.

    So, say you want to figure out how much light you’re going to need in order to shoot at a certain f-stop. Well, all you do is plug in your values (you should know the f-stop, ISO, and your light meter calibration constant) into the formula below:

    lux = C (f-stop²/shutter (in seconds))/ISO

     

    Exposure Value Calculator:

    https://snapheadshots.com/resources/exposure-and-light-calculator

     

    https://www.scantips.com/lights/exposurecalc.html

     

    https://www.pointsinfocus.com/tools/exposure-settings-ev-calculator/#google_vignette

     

    From that perspective, an exposure stop is a measurement of Exposure and provides a universal linear scale to measure the increase and decrease in light, exposed to the image sensor, due to changes in shutter speed, iso & f-stop.
    +-1 stop is a doubling or halving of the amount of light let in when taking a photo.
    1 EV is just another way to say one stop of exposure change.

     

    One major use of EV (Exposure Value) is just to measure any change of exposure, where one EV implies a change of one stop of exposure. Like when we compensate our picture in the camera.

     

    If the picture comes out too dark, our manual exposure could correct the next one by directly adjusting one of the three exposure controls (f/stop, shutter speed, or ISO). Or if using camera automation, the camera meter is controlling it, but we might apply +1 EV exposure compensation (or +1 EV flash compensation) to make the result goal brighter, as desired. This use of 1 EV is just another way to say one stop of exposure change.

     

    On a perfect day the difference from sampling the sky vs the sun exposure with diffusing spot meters is about 3.2 exposure difference.

     ~15.4 EV for the sun
     ~12.2 EV for the sky
    

    That is as a ballpark. All still influenced by surroundings, accuracy parameters, fov of the sensor…

     

     

     

    EV calculator

    https://www.scantips.com/lights/evchart.html#calc

    http://www.fredparker.com/ultexp1.htm

     

    Exposure value is basically used to indicate an interval on the photographic exposure scale, with a difference of 1 EV corresponding to a standard power-of-2 exposure step, also commonly referred to as a “stop”.

     

    https://contrastly.com/a-guide-to-understanding-exposure-value-ev/

     

    Retrieving photographic exposure from an image

    All you can hope to measure with your camera and some images is the relative reflected luminance. Even if you have the camera settings. https://en.wikipedia.org/wiki/Relative_luminance

     

    If you REALLY want to know the amount of light in absolute radiometric units, you’re going to need to use some kind of absolute light meter or measured light source to calibrate your camera. For references on how to do this, see: Section 2.5 Obtaining Absolute Radiance from http://www.pauldebevec.com/Research/HDR/debevec-siggraph97.pdf

     

    IF you are still trying to gauge relative brightness, the level of the sun in Nuke can vary, but it should be in the thousands. Ie: between 30,000 and 65,0000 rgb value depending on time of the day, season and atmospherics.

     

    The values for a 12 o’clock sun, with the sun sampled at EV 15.5 (shutter 1/30, ISO 100, F22) is 32.000 RGB max values (or 32,000 pixel luminance).
    The thing to keep an eye for is the level of contrast between sunny side/fill side.  The terminator should be quite obvious,  there can be up to 3 stops difference between fill/key in sunny lit objects.

     

    Note: In Foundry’s Nuke, the software will map 18% gray to whatever your center f/stop is set to in the viewer settings (f/8 by default… change that to EV by following the instructions below).
    You can experiment with this by attaching an Exposure node to a Constant set to 0.18, setting your viewer read-out to Spotmeter, and adjusting the stops in the node up and down. You will see that a full stop up or down will give you the respective next value on the aperture scale (f8, f11, f16 etc.).
    One stop doubles or halves the amount or light that hits the filmback/ccd, so everything works in powers of 2.
    So starting with 0.18 in your constant, you will see that raising it by a stop will give you .36 as a floating point number (in linear space), while your f/stop will be f/11 and so on.

    If you set your center stop to 0 (see below) you will get a relative readout in EVs, where EV 0 again equals 18% constant gray.
    Note: make sure to set your Nuke read node to ‘raw data’

     

    In other words. Setting the center f-stop to 0 means that in a neutral plate, the middle gray in the macbeth chart will equal to exposure value 0. EV 0 corresponds to an exposure time of 1 sec and an aperture of f/1.0.

     

    To switch Foundry’s Nuke’s SpotMeter to return the EV of an image, click on the main viewport, and then press s, this opens the viewer’s properties. Now set the center f-stop to 0 in there. And the SpotMeter in the viewport will change from aperture and fstops to EV.

     

    If you are trying to gauge the EV from the pixel luminance in the image:
    – Setting the center f-stop to 0 means that in a neutral plate, the middle 18% gray will equal to exposure value 0.
    – So if EV 0 = 0.18 middle gray in nuke which equal to a pixel luminance of 0.18, doubling that value, doubles the EV.

    .18 pixel luminance = 0EV
    .36 pixel luminance = 1EV
    .72 pixel luminance = 2EV
    1.46 pixel luminance = 3EV
    ...
    

     

    This is a Geometric Progression function: xn = ar(n-1)

    The most basic example of this function is 1,2,4,8,16,32,… The sequence starts at 1 and doubles each time, so

    • a=1 (the first term)
    • r=2 (the “common ratio” between terms is a doubling)

    And we get:

    {a, ar, ar2, ar3, … }

    = {1, 1×2, 1×22, 1×23, … }

    = {1, 2, 4, 8, … }

    In this example the function translates to: n = 2(n-1)
    You can graph this curve through this expression: x = 2(y-1)  :

    You can go back and forth between the two values through a geometric progression function and a log function:

    (Note: in a spreadsheet this is: = POWER(2; cell# -1)  and  =LOG(cell#, 2)+1) )

    2(y-1) log2(x)+1
    x y
    1 1
    2 2
    4 3
    8 4
    16 5
    32 6
    64 7
    128 8
    256 9
    512 10
    1024 11
    2048 12
    4096 13

     

    Translating this into a geometric progression between an image pixel luminance and EV:

    (more…)

    , ,
    Read more: Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurements
  • What is physically correct lighting all about?

    http://gamedev.stackexchange.com/questions/60638/what-is-physically-correct-lighting-all-about

     

    2012-08 Nathan Reed wrote:

    Physically-based shading means leaving behind phenomenological models, like the Phong shading model, which are simply built to “look good” subjectively without being based on physics in any real way, and moving to lighting and shading models that are derived from the laws of physics and/or from actual measurements of the real world, and rigorously obey physical constraints such as energy conservation.

     

    For example, in many older rendering systems, shading models included separate controls for specular highlights from point lights and reflection of the environment via a cubemap. You could create a shader with the specular and the reflection set to wildly different values, even though those are both instances of the same physical process. In addition, you could set the specular to any arbitrary brightness, even if it would cause the surface to reflect more energy than it actually received.

     

    In a physically-based system, both the point light specular and the environment reflection would be controlled by the same parameter, and the system would be set up to automatically adjust the brightness of both the specular and diffuse components to maintain overall energy conservation. Moreover you would want to set the specular brightness to a realistic value for the material you’re trying to simulate, based on measurements.

     

    Physically-based lighting or shading includes physically-based BRDFs, which are usually based on microfacet theory, and physically correct light transport, which is based on the rendering equation (although heavily approximated in the case of real-time games).

     

    It also includes the necessary changes in the art process to make use of these features. Switching to a physically-based system can cause some upsets for artists. First of all it requires full HDR lighting with a realistic level of brightness for light sources, the sky, etc. and this can take some getting used to for the lighting artists. It also requires texture/material artists to do some things differently (particularly for specular), and they can be frustrated by the apparent loss of control (e.g. locking together the specular highlight and environment reflection as mentioned above; artists will complain about this). They will need some time and guidance to adapt to the physically-based system.

     

    On the plus side, once artists have adapted and gained trust in the physically-based system, they usually end up liking it better, because there are fewer parameters overall (less work for them to tweak). Also, materials created in one lighting environment generally look fine in other lighting environments too. This is unlike more ad-hoc models, where a set of material parameters might look good during daytime, but it comes out ridiculously glowy at night, or something like that.

     

    Here are some resources to look at for physically-based lighting in games:

     

    SIGGRAPH 2013 Physically Based Shading Course, particularly the background talk by Naty Hoffman at the beginning. You can also check out the previous incarnations of this course for more resources.

     

    Sébastien Lagarde, Adopting a physically-based shading model and Feeding a physically-based shading model

     

    And of course, I would be remiss if I didn’t mention Physically-Based Rendering by Pharr and Humphreys, an amazing reference on this whole subject and well worth your time, although it focuses on offline rather than real-time rendering.

    ,
    Read more: What is physically correct lighting all about?
  • HDRI Median Cut plugin

    www.hdrlabs.com/picturenaut/plugins.html

     

     

    Note. The Median Cut algorithm is typically used for color quantization, which involves reducing the number of colors in an image while preserving its visual quality. It doesn’t directly provide a way to identify the brightest areas in an image. However, if you’re interested in identifying the brightest areas, you might want to look into other methods like thresholding, histogram analysis, or edge detection, through openCV for example.

     

    Here is an openCV example:

     

    # bottom left coordinates = 0,0
    import numpy as np
    import cv2
    
    # Load the HDR or EXR image
    image = cv2.imread('your_image_path.exr', cv2.IMREAD_UNCHANGED)  # Load as-is without modification
    
    # Calculate the luminance from the HDR channels (assuming RGB format)
    luminance = np.dot(image[..., :3], [0.299, 0.587, 0.114])
    
    # Set a threshold value based on estimated EV
    threshold_value = 2.4  # Estimated threshold value based on 4.8 EV
    
    # Apply the threshold to identify bright areas
    # The luminance array contains the calculated luminance values for each pixel in the image. # The threshold_value is a user-defined value that represents a cutoff point, separating "bright" and "dark" areas in terms of perceived luminance.
    thresholded = (luminance > threshold_value) * 255 
    
    # Convert the thresholded image to uint8 for contour detection 
    thresholded = thresholded.astype(np.uint8) 
    
    # Find contours of the bright areas 
    contours, _ = cv2.findContours(thresholded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 
    
    # Create a list to store the bounding boxes of bright areas 
    bright_areas = [] 
    
    # Iterate through contours and extract bounding boxes for contour in contours: 
    x, y, w, h = cv2.boundingRect(contour) 
    
    # Adjust y-coordinate based on bottom-left origin 
    y_bottom_left_origin = image.shape[0] - (y + h) bright_areas.append((x, y_bottom_left_origin, x + w, y_bottom_left_origin + h)) 
    
    # Store as (x1, y1, x2, y2) 
    # Print the identified bright areas 
    print("Bright Areas (x1, y1, x2, y2):") for area in bright_areas: print(area)

     

    More details

     

    Luminance and Exposure in an EXR Image:

    • An EXR (Extended Dynamic Range) image format is often used to store high dynamic range (HDR) images that contain a wide range of luminance values, capturing both dark and bright areas.
    • Luminance refers to the perceived brightness of a pixel in an image. In an RGB image, luminance is often calculated using a weighted sum of the red, green, and blue channels, where different weights are assigned to each channel to account for human perception.
    • In an EXR image, the pixel values can represent radiometrically accurate scene values, including actual radiance or irradiance levels. These values are directly related to the amount of light emitted or reflected by objects in the scene.

     

    The luminance line is calculating the luminance of each pixel in the image using a weighted sum of the red, green, and blue channels. The three float values [0.299, 0.587, 0.114] are the weights used to perform this calculation.

     

    These weights are based on the concept of luminosity, which aims to approximate the perceived brightness of a color by taking into account the human eye’s sensitivity to different colors. The values are often derived from the NTSC (National Television System Committee) standard, which is used in various color image processing operations.

     

    Here’s the breakdown of the float values:

    • 0.299: Weight for the red channel.
    • 0.587: Weight for the green channel.
    • 0.114: Weight for the blue channel.

     

    The weighted sum of these channels helps create a grayscale image where the pixel values represent the perceived brightness. This technique is often used when converting a color image to grayscale or when calculating luminance for certain operations, as it takes into account the human eye’s sensitivity to different colors.

     

    For the threshold, remember that the exact relationship between EV values and pixel values can depend on the tone-mapping or normalization applied to the HDR image, as well as the dynamic range of the image itself.

     

    To establish a relationship between exposure and the threshold value, you can consider the relationship between linear and logarithmic scales:

    1. Linear and Logarithmic Scales:
      • Exposure values in an EXR image are often represented in logarithmic scales, such as EV (exposure value). Each increment in EV represents a doubling or halving of the amount of light captured.
      • Threshold values for luminance thresholding are usually linear, representing an actual luminance level.
    2. Conversion Between Scales:

      • To establish a mathematical relationship, you need to convert between the logarithmic exposure scale and the linear threshold scale.

      • One common method is to use a power function. For instance, you can use a power function to convert EV to a linear intensity value.



       

      threshold_value = base_value * (2 ** EV)



      Here, EV is the exposure value, base_value is a scaling factor that determines the relationship between EV and threshold_value, and 2 ** EV is used to convert the logarithmic EV to a linear intensity value.


    3. Choosing the Base Value:
      • The base_value factor should be determined based on the dynamic range of your EXR image and the specific luminance values you are dealing with.
      • You may need to experiment with different values of base_value to achieve the desired separation of bright areas from the rest of the image.

     

    Let’s say you have an EXR image with a dynamic range of 12 EV, which is a common range for many high dynamic range images. In this case, you want to set a threshold value that corresponds to a certain number of EV above the middle gray level (which is often considered to be around 0.18).

    Here’s an example of how you might determine a base_value to achieve this:

     

    # Define the dynamic range of the image in EV
    dynamic_range = 12
    
    # Choose the desired number of EV above middle gray for thresholding
    desired_ev_above_middle_gray = 2
    
    # Calculate the threshold value based on the desired EV above middle gray
    threshold_value = 0.18 * (2 ** (desired_ev_above_middle_gray / dynamic_range))
    
    print("Threshold Value:", threshold_value)
    , ,
    Read more: HDRI Median Cut plugin
  • Eye retina’s Bipolar Cells, Horizontal Cells, and Photoreceptors

    In the retina, photoreceptors, bipolar cells, and horizontal cells work together to process visual information before it reaches the brain. Here’s how each cell type contributes to vision:

     

    1. Photoreceptors

    • Types: There are two main types of photoreceptors: rods and cones.
      • Rods: Specialized for low-light and peripheral vision; they help us see in dim lighting and detect motion.
      • Cones: Specialized for color and detail; they function best in bright light and are concentrated in the central retina (the fovea), allowing for high-resolution vision.
    • Function: Photoreceptors convert light into electrical signals. When light hits the retina, photoreceptors undergo a chemical change, triggering an electrical response that initiates the visual process. Rods and cones detect different intensities and colors, providing the foundation for brightness and color perception.

     

    2. Bipolar Cells

    • Function: Bipolar cells act as intermediaries, connecting photoreceptors to ganglion cells, which send signals to the brain. They receive input from photoreceptors and relay it to the retinal ganglion cells.
    • On and Off Bipolar Cells: Some bipolar cells are ON cells, responding when light is detected (depolarizing in light), and others are OFF cells, responding in darkness (depolarizing in the absence of light). This division allows for more precise contrast detection and the ability to distinguish light from dark areas in the visual field.

     

    3. Horizontal Cells

    • Function: Horizontal cells connect photoreceptors to each other and create lateral interactions between them. They integrate signals from multiple photoreceptors, allowing them to adjust the sensitivity of neighboring photoreceptors in response to varying light conditions.
    • Lateral Inhibition: This process improves visual contrast and sharpness by making the borders between light and dark areas more distinct, enhancing our ability to perceive edges and fine detail.

     

    These three types of cells work together to help the retina preprocess visual information and perception, emphasizing contrast and adjusting for different lighting conditions before signals are sent to the brain for further processing and interpretation.

     

     

    ,
    Read more: Eye retina’s Bipolar Cells, Horizontal Cells, and Photoreceptors